An overview of

RAMSES

(RApid Multiprocessor Simulation of Electric power Systems)

Thierry Van Cutsem Petros Aristidou

© University of Liège, Belgium
September 2014
Dynamic simulation needs

- Power systems equipped with more and more controls reacting to disturbances, with either beneficial or detrimental effects
 - requires simulating dynamic responses
 - static security analysis no longer sufficient

- larger and larger models considered
 - simulation of large interconnections
 - incorporation of sub-transmission and distribution levels
 - distribution grids expected to host more and more distributed energy sources
 - active distribution network management impacts overall system response
 - explicit modelling preferred to equivalents

- longer simulated times
 - check response of system up to its return to steady state
 - long-term dynamics: typically several minutes after initiating event

- faster than real-time (simulators, prediction capability, etc.)
Speeding up simulations

- Conventional simulation codes and serial computing platforms have met their limits
- Dynamic simulation software must be revisited to cope with large models and take advantage of computer technology
- Multi-core computers available widely and at affordable price
 - Deployed to overcome the limits of single-core computers
 - Parallel computing tools are available
- Attempts to parallelize existing power system simulation software reveal themselves unsuccessful
- New solution schemes must be devised to exploit parallelism
 - RAMSES was developed with this objective in mind, based on system decomposition
RAMSES ingredients

Power System Modeling
- Differential-Algebraic Equations
- Hybrid Equations
- Modular Modeling

Software Implementation
- OpenMP
- Vectorisation
- Lapack
- Interfaces (C, Matlab, Java,...)
- Sparse solver
- Modern Fortran
- HPC

Acceleration Techniques
- Parallel Schur-complement Algorithm
- Localization
- Time-scale Decomposition
- Accelerated Newton method
Power system modelling in RAMSES

Power system =
AC network(s) + DC grid(s) + injectors + two-ports

- (future) multi-terminal DC grid
- voltage-source converters
- AC network
- synchronous machine
- voltage and frequency dependent load
- induction motor
- static var compensator
- HVDC link
- two-ports (connected to two buses)
- injectors (connected to one AC bus)
Each injector:
- is interfaced to the AC network through the (rectangular components of) bus voltage and injected current
- is modelled with its own Differential-Algebraic (DA) equations
 - algebraic equations yield higher modelling flexibility
 - the solver handles equations changing between differential and algebraic

... and similarly for two-ports
Component models

- **Hard-coded:**
 - synchronous machine, voltage and frequency dependent load

- **open-source:**
 - induction machine, some IEEE models of excitation and torque controls of synchronous machine, wind generators, etc.

- **user-defined:**
 - 4 categories: torque control of synchronous machine, excitation control of synchronous machine, injector and two-port
 - compiled and linked to RAMSES for computational efficiency
Discrete-time controls

- Monitor some observables from the simulation of the D-A models
- modify some parameters in those models
- act at discrete times
 - when a condition is fulfilled, or at multiple of their internal activation period
 - applied after the simulation time step is completed.

Examples of applications:
- distributed controllers
 - under-frequency and under-voltage load shedding
 - generator protections, etc.
- wide-area monitoring and/or control
 - tracking state estimation: RAMSES used to simulate SCADA and PMUs
 - secondary frequency control
 - secondary voltage control
 - centralized load shedding against voltage instability
 - coordinated control of dispersed generation units in distribution grids, etc.
Acceleration techniques – parallel processing

- Based on decomposition of model according to:
 network(s) + injectors + two-ports
- Injectors (and two-ports) solved independently of each other
- Same solution as a non-decomposed scheme by resorting to the Schur-complement for the network equations
- Tasks pertaining to components assigned to a number of threads, e.g.
 - Update and factorization of local Jacobian
 - Computation of mismatch vector (of Newton method)
 - Computation of contribution to Schur-complement matrix
 - Solution of local linear systems, etc.
- Threads executed each on a separate processor
 - Computational load balanced among the available processors
- Shared-memory parallel programming model
 - Through OpenMP Application Programming Interface (API)
Acceleration techniques – localization

After a disturbance, the various components of a (large enough) system exhibit different levels of dynamic activity.

This property is exploited at each time step to:

- **accelerate Newton scheme**
 - thanks to the decomposed solution scheme, Newton iterations are skipped on components that have already converged

- **exploit component latency**
 - injectors with high (resp. low) dynamic activity are classified as *active*; the others as *latent*
 - active injectors have their original model simulated
 - latent injectors are replaced by automatically calculated, sensitivity-based models to accelerate the simulation
 - a fast to compute metrics is used to classify the injectors
 - injectors seamlessly switch between categories according to their activity
Acceleration techniques – time-scale decomposition

- When only the long-term behaviour of the system is of interest, RAMSES can provide a faster to compute *time-averaged* response
 - unlike with the “quasi steady-state” approximation, no model simplification is performed
 - instead, the original system model is simulated with larger time-steps to “filter out” the fast dynamics

- a *stiff-decay* (or *L₁-stable*) integration scheme is used to this purpose

- with a dedicated treatment of the discrete part of the model (limits, switchings, etc.) by the solver.

Example of application:
- 5-10 seconds after a fault: simulation with time steps of $\frac{1}{4}$ to $\frac{1}{2}$ cycle
- from $t \approx 5-10$ seconds until $t \approx$ several minutes: simulation with time steps of 2 to 6 cycles
- use shared-memory parallel processing techniques to accelerate the solution of the decomposed DAE system
- up to \(4.5x\) faster execution

- use time-averaging to "filter" out fast dynamics and concentrate on average evolution
- use for long-term dynamics
- use "stiff-decay" (L-stable) integration scheme
- use "large" time-steps
- use proper, ex-post, treatment of discrete events

- many disturbances affect only a subset of injectors
- converged injector models stop being solved
- during the simulation, injectors showing high dynamic activity are classified as **active** and the original DAE model is simulated. Injectors showing low dynamic activity are classified as **latent** and are replaced by simple, linear, automatically calculated models.
- up to \(4x\) faster execution
- simulation can stop early if all injectors become latent

- accurate simulations with up to \(11x\) faster execution
- look-ahead, faster than real-time dynamic simulations for systems up to 8000 buses (approx. 75 000 dynamic states) on 24-core, shared-memory computer
Software implementation

- Written in modern (2003) FORTRAN using the OpenMP API for shared-memory parallel programming

- General implementation: no “hand-crafted” optimization particular to the computer system, the power system or the disturbance

- Wide range of platforms: from personal laptops to multi-core scientific computing equipment
 - Microsoft Windows OS: tested on Windows XP and 7
 - Linux OS: tested on Debian, Ubuntu, Redhat

- Interface with MATLAB
 - For faster prototyping of discrete-time controls (see slide # 8)
 - Through the “MATLAB engine”
 - During the simulation RAMSES passes information to MATLAB workspace and receives control actions
Possible execution modes

- **As a standalone program** executed from command line terminal
 - for remote execution on systems without graphic interfaces
 - embedded in scripts as part of more complex procedures

- **with a JAVA-based Graphic User Interface**
 - for an easy-to-use and standalone execution
 - JAVA for compatibility with multiple platforms
 - single JAVA archive (.jar file) including all necessary executables and libraries to perform simulations and visualize results
 - → software ready to be used with no installation!

- **as a dynamic library** (.dll or .so)
 - to be linked to other software (e.g. written in C)
 - or to be loaded in scripting languages such as Python
 - provides the necessary functionalities (through C functions and data types) to control the simulation from an external software or script
screenshots of the JAVA-based Graphic User Interface
Characteristics
• 2565 buses
• 3225 branches
• 290 power plants
• 4311 dynamically modeled loads
• 506 impedance loads
• 1136 discrete devices
• 35559 differential-algebraic states

Disturbance
• short circuit lasting seven cycles
• cleared by opening one line

Simulation
• over 240 s
• with one-cycle (16.6 ms) time step
• $\epsilon_L=0.1\text{MW}/\text{MVAr}$, $T_{obs}=5$ s
Examples of results: Hydro-Québec system (2)

Characteristics
- same as previous slide

Disturbance
- same as previous slide

Simulation
- one-cycle time step for the first 15 s
- then 0.05 s for the remaining
- $\epsilon_L=0.1$ MW/MVAr, $T_{obs}=5$ s

Main speedup:
- Parallel computing
- Localization & time-scale decomposition
Examples of results: PEGASE test system (1)

Characteristics
- 15226 buses
- 21765 branches
- 3483 power plants
- 7211 dynamically modeled loads
- 2945 discrete devices
- 146239 differential-algebraic states

Disturbance
- busbar fault lasting five cycles
- cleared by opening two double-circuit lines

Simulation
- over 240 s
- with one-cycle (20 ms) time step
- \(\epsilon_L=0.1\text{MW}/\text{MVAr}, T_{\text{obs}}=20\text{ s}\)
Examples of results: PEGASE test system (2)

Characteristics
• same as previous slide

Disturbance
• same as previous slide

Simulation
• over 240 s
• one-cycle time step for the first 15 s
• then 0.05 s for the remaining
• $\epsilon_L = 0.1\text{MW/MVAR}$, $T_{\text{obs}} = 20$ s

Main speedup:
- Parallel computing
- Localization & time-scale decomposition

