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Abstract— The present paper considers distributed consen-
sus algorithms for agents evolving on a connected compact
homogeneous (CCH) manifold. The agents track no external
reference and communicate their relative state according to an
interconnection graph. The paper first formalizes the consensus
problem for synchronization (i.e. maximizing the consensus)
and balancing (i.e. minimizing the consensus); it thereby in-
troduces the induced arithmetic mean, an easily computable
mean position on CCH manifolds. Then it proposes and
analyzes various consensus algorithms on manifolds: natural
gradient algorithms which reach local consensus equilibria; an
adaptation using auxiliary variables for almost-global synchro-
nization or balancing; and a stochastic gossip setting for global
synchronization. It closes by investigating the dependence of
synchronization properties on the attraction function between
interacting agents on the circle. The theory is also illustrated
on SO(n) and on the Grassmann manifolds.

I. INTRODUCTION

The distributed computation of means/averages of datasets

(in an algorithmic setting) and the synchronization or spread-

ing of a set of agents (in a control setting) have at-

tracted growing interest in the literature, with applications

like swarms/formations (e.g. [16], [26]), distributed decision

making (e.g. [20], [31]), networks (e.g. [30]), optimal coding

or covering (e.g. [8], [9]), etc. The modeling and understand-

ing of swarm behavior in nature has also led to many studies

(e.g. [14], [29], [32]).

Recent results have contributed to a good understanding

of synchronization of interacting agents in Euclidean space,

based on the linear consensus algorithm (e.g. [18], [31], [20])

d
dt

yk =
∑

j ajk (yj − yk) (1)

where yk ∈ R
n, k = 1, 2, ..., N are the agents’ states and

the ajk ≥ 0 characterize how strongly they are attracted

towards each other (ajk = 0 implying no interconnection,

i.e. no attraction of agent k towards j). Global exponential

synchronization is ensured even with varying ajk , as long as

the agents are uniformly connected (see below).

However, many interesting applications involve manifolds

that are not homeomorphic to an Euclidean space, like the

circle S1 for (e.g. oscillator) phase variables or the group of

rotations SO(n) for rigid body orientations.

The goal of the present paper is to extend the framework of

consensus algorithm (1) to connected compact homogeneous

manifolds (which include S1, SO(n), Grassmann manifolds

Grass(p, n) and spheres Sn−1) and to propose algorithms
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for global synchronization on these manifolds. Indeed, unlike

for Euclidean spaces, agents attracted towards each other on

manifolds do not always reach synchronization. We therefore

first define particular “(anti-)consensus” configurations on

manifolds (Section II). A cost function is then built and

gradient algorithms are derived which drive an interacting

swarm to (anti-)consensus configurations (Section III). The

whole framework can be obtained from an easily computable

“mean position” on manifolds. The convenient idea behind

it is to embed the manifold in an Euclidean space R
m

and measure distances between agents in R
m. We then

propose two modifications to reach global synchronization

with weak conditions on agent interconnections: adding

auxiliary “estimator variables” with values in R
m, which the

agents update and communicate (Section IV); and letting

each agent at each time interact with at most one other

agent, which is stochastically chosen (Section V). In both

cases, the resulting algorithms generically ensure global

convergence to synchronization if the swarm of agents is

uniformly connected; the estimator algorithm also has a

variant which distributes the agents on the compact manifold

in a configuration which we call “balanced”. Finally, we

show with two examples how the convergence properties of

a consensus algorithm on the circle depend on the attraction

profile between agents as a function of distance (Section VI).

The concepts are illustrated on S1, SO(n) and Grass(p, n).
In the literature so far, the study of global synchronization

or balancing properties in non-Euclidean manifolds is not

widely covered. The circle is often addressed: oscillator

synchronization studies mostly derive from the Kuramoto

model (see [28] for a review); recently, we addressed con-

sensus on S1 from a control perspective [26], [23], [25],

[27]. Manifold SO(3) has attracted attention in recent years

in the context of satellite attitudes: reference- or leader-

dependent synchronization is studied e.g. in [15], [3], local

synchronization studies with a geometric approach are found

in [6], [19]. The computation of means on manifolds has

triggered some research, including classical but computation-

ally heavy definitions like [13], [7], as well as developments

for particular spaces which are covered by our “induced

arithmetic mean” approach (see [17] on SO(3) and [1],

[11], [8] on Grass(p, n)). The topic of optimization-based

algorithm design on manifolds has considerably developed

over the last decades (see e.g. [5], [10], [12], [2]).

The present paper is based on [21] and associated pub-

lications. Sections II, III, IV are based on [22]. Section

V is based on [24]. The reader is invited to consult these

references for more mathematical background, discussion

and proofs, as well as a deeper treatment of examples.
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Preliminaries

Interconnections among agents are represented by a graph

G, whose N vertices are the N agents, and containing edge

(j, k) iff agent j sends information to agent k, which is

denoted j  k or (j, k) ∈ E, the set of edges. A weight ajk

is associated to each ordered pair of agents, such that ajk > 0
iff j  k, ajk = 0 else. By convention, akk = 0 ∀k is

assumed. Matrix A containing the ajk is called the adjacency

matrix of G. The in-Laplacian of G is L(i) = D(i) − A

where diagonal matrix D(i) contains the in-degrees d
(i)
kk :=

∑N

j=1 ajk. By construction, L(i) has zero column sums. G

is undirected if A = AT . G is balanced if d
(i)
kk =

∑N

j=1 akj .

G is strongly connected if it contains a directed path from

any vertex j to any vertex k; G is weakly connected if

such paths exist in the associated undirected graph, with

adjacency matrix A+AT . Time-varying interconnections are

represented by time-varying edges. We always assume that

the elements of A(t) are bounded and satisfy some threshold

ajk(t) ≥ δ > 0 ∀(j, k) ∈ E(t) and ∀t, i.e. G(t) is a δ-

digraph. In a δ-digraph G(t), vertex j is said to be connected

to vertex k across [t1, t2] if there is a directed path from j
to k in the digraph defined by adjacency matrix Ā where

ājk =

{

∫ t2

t1
ajk(t)dt if

∫ t2

t1
ajk(t)dt ≥ δ

0 if
∫ t2

t1
ajk(t)dt < δ

.

A δ-digraph G(t) is uniformly connected if there exist a

vertex k and a time horizon T > 0 such that ∀t, k is

connected to all other vertices across [t, t + T ].

A homogeneous manifold M is a manifold with a tran-

sitive group action by a Lie group G: it is isomorphic to

the quotient manifold G/H of a group G by one of its

subgroups H. Informally, it can be seen as a manifold on

which “all points are equivalent”. The present paper con-

siders connected compact homogeneous (CCH) manifolds

satisfying the following embedding property.

Assumption 1: M is a CCH manifold smoothly embedded

in R
m with the Euclidean norm ‖y‖ = rM constant over

y ∈ M. The Lie group G acts as a subgroup of the orthogonal

group on R
m.

It is sometimes preferred to represent y ∈ M by a

matrix instead of a vector. Componentwise identification

R
n1×n2 ∼= R

m is then assumed; the corresponding norm

is the Frobenius norm ‖B‖ =
√

trace(BT B).

The special orthogonal group SO(n) is the set of rotation

matrices in R
n. A point of SO(n) is characterized by a real

n×n orthogonal matrix Q, i.e. QT = Q−1, with determinant

+1. SO(n) is a homogeneous (as any Lie group), compact

and connected manifold. It has dimension n(n − 1)/2.

Each point on the Grassmann manifold Grass(p, n) de-

notes a p-dimensional subspace Y of R
n. The dimension of

Grass(p, n) is p(n−p). Since Grass(n−p, n) is isomorphic

to Grass(p, n) by identifying orthogonally complementary

subspaces, we assume w.l.o.g. that p ≤ n
2 . Grass(p, n)

is connected, compact and homogeneous as the quotient

manifold of O(n) by O(p) × O(n − p). In order to embed

Grass(p, n) in R
m ∼= R

n×n, we use the “projector repre-

sentation” Π = Y Y T , where Y ∈ R
n×p is any orthonormal

basis of subspace Y in R
n.

II. MEAN AND CONSENSUS ON MANIFOLDS

A. The induced arithmetic mean

Consider a set of N agents on a manifold M satisfying

Assumption 1. The position of agent k is denoted by yk and

its weight by wk > 0.

Definition 1: The induced arithmetic mean IAM ⊆ M is

the set of points in M that globally minimize the weighted

sum of squared Euclidean distances in R
m to each yk:

IAM = argmin
c∈M

∑N
k=1 wk d2

Rm(yk, c) (2)

= argmin
c∈M

∑N

k=1 wk (yk − c)T (yk − c) . (3)

The anti-[induced arithmetic mean] AIAM ⊆ M is the set

of points in M that globally maximize this weighted sum.

The point in Definition 1 is that distances are measured in

the embedding space R
m. It thereby differs from the canon-

ical Karcher mean [13], which uses the geodesic distance on

M. The IAM satisfies several properties of a mean, see [22].

It does not always reduce to a single point, but this seems

unavoidable (imagine e.g. points uniformly distributed on a

circle). The main advantage of the IAM over the Karcher

mean is computational: defining the centroid Ce ∈ R
m by

Ce = 1
W

∑N

k=1 wk yk , where W =
∑N

k=1 wk

it holds

IAM = argmax
c∈M

(cT Ce) . (4)

Thus computing the IAM just requires to maximize a lin-

ear function of R
m in a very regular search space M.

For SO(n), Grass(p, n) and the n-dimensional spheres

Sn−1 ⊂ R
n, the linear function has no local minima, so

local optimization is sufficient.

Assumption 2: The local maxima of any linear function

f(c) = cT b over c ∈ M, with b fixed in R
m, are all global

maxima.

Example 1: Tthe circle S1 embedded in R
2 with its center

at the origin satisfies Assumptions 1 and 2. The IAM is the

central projection of Ce onto S1. It reduces to a single point

if Ce 6= 0, else it contains the whole circle. The IAM uses

the chordal distance between points, while the Karcher mean

would use arclength distance.

SO(n), embedded as orthogonal matrices Q ∈ R
n×n,

det(Q) > 0, satisfies Assumptions 1 and 2. The IAM is

the orthogonal component of the polar decomposition of Ce

if det(Ce) > 0; if det(Ce) ≤ 0 it is given by a related

formula [22].

Grass(p, n) is represented as the set of orthonormal p-

rank projectors Πk, embedded in the symmetric positive

semidefinite cone of R
n×n, to satisfy Assumptions 1 and

2. The IAM is the dominant p-dimensional eigenspace of

Ce.
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B. Consensus on manifolds

Consider that the N agents are interconnected according

to a fixed digraph G of adjacency matrix A = [ajk]. For

simplicity we take wk = 1 ∀k.

Definition 2: Synchronization is the configuration where

yj = yk ∀j, k. A consensus configuration for G satisfies

yk ∈ argmax
c∈M

(

cT
∑N

j=1 ajk yj

)

∀k (5)

i.e. each agent is located at a point of the IAM of its neigh-

bors j  k. An anti-consensus configuration is similarly

defined with IAM replaced AIAM . The agents are balanced

if their IAM contains all M.

Note that (anti-)consensus is defined as a Nash equi-

librium: each agent minimizes its cost function assuming

the others fixed. Consensus and anti-consensus are graph-

dependent notions. Synchronization and balancing are graph-

independent and can be seen as situations of “complete”

consensus and anti-consensus respectively.

Proposition 1: If G is the equally-weighted complete

graph, then synchronization is the only consensus con-

figuration. All balanced configurations are anti-consensus

configurations for the equally-weighted complete graph.

The second part of Proposition 1 does not establish a

necessary and sufficient condition; anti-consensus configu-

rations for the equally-weighted complete graph that are not

balanced, though exceptional, do exist. Balancing implies

some spreading of the agents on the manifold. A full char-

acterization of balanced configurations seems complicated.

Example 2: We limit ourselves to the circle S1.

Consider the equally-weighted undirected ring graph, in

which each agent is connected to two neighbors such that the

graph forms a single closed undirected path. Regular consen-

sus configurations correspond to situations with consecutive

agents in the path always separated by the same angle 0 ≤
χ ≤ π/2; regular anti-consensus configurations have π/2 ≤
χ ≤ π. In addition, for N ≥ 4, irregular consensus and

anti-consensus configurations exist where non-consecutive

angles of the regular configurations are replaced by (π−χ).
The reader is encouraged to discuss implications of this

example (also see [22]); for instance, there is no common

anti-consensus state for all ring graphs.

Anti-consensus configurations for the equally-weighted

complete graph are fully characterized in [26]: the only anti-

consensus configurations that are not balanced correspond to

(N +1)/2 agents at some θ∗ and (N−1)/2 agents at θ∗+π,

for N odd. Balanced configurations are unique for N = 2
and N = 3 and form a continuum for N > 3.

III. GRADIENT CONSENSUS ALGORITHMS

For a graph G with adjacency matrix A = [ajk] and

associated Laplacian L(i) = [l
(i)
jk ], associated to y =

(y1, ..., yN ) ∈ MN , define

PL(y) = 1
2N2

∑

j,k ajk yT
j yk = ξ1 −

1
2N2

∑

j,k l
(i)
jk yT

j yk

= ξ2 −
1

4N2

∑

j,k ajk ‖yj − yk‖
2 (6)

where ξ1, ξ2 are constants. In [23], [27], PL is studied

on S1 for undirected equally-weighted G. For the unit-

weighted complete graph, P := PL +
r2

M

2N
= 1

2‖Ce‖
2, the

squared norm of centroid Ce; this is a classical measure of

oscillator synchrony in the literature, e.g. in the context of

the Kuramoto model [14], [28].

Proposition 2: Synchronization of the N agents on M is

the unique global maximum of PL whenever G is weakly

connected. Further, if M satisfies Assumptions 1 and 2,

then given an undirected graph G, a local maximum (resp.

minimum) of the associated PL(y) necessarily corresponds

to a consensus (resp. anti-consensus) configuration for G.

In [26], P is used on S1 to derive gradient algorithms for

synchronizing (by maximizing P ) or balancing (by minimiz-

ing P ) headings of particles in planar motion. We extend this

to CCH manifolds and to general consensus configurations.

For simplicity, we limit ourselves to continuous-time gradient

algorithms, where the gradient is defined with the canonical

metric induced by the embedding of M in R
m.

A gradient algorithm for PL yields, for k = 1...N ,

d
dt

yk(t) = 2N2α gradk,M(PL) (7)

= α ProjTM,k

(

∑

j(ajk + akj)yj

)

(8)

= α ProjTM,k

(

∑

j(ajk + akj)(yj − yk)
)

(9)

where α > 0 (resp. α < 0) for consensus (resp. anti-

consensus), gradk,M(f) denotes the gradient of f with

respect to yk along M, and ProjTM,k is the orthogonal

projection onto the tangent space to M at yk. Algorithm

(9) requires each agent k to know the relative position with

respect to itself of all agents j for which j  k or k  j.

Since information flow is restricted to j  k, (9) can only

be implemented for undirected G, for which it becomes

d
dt

yk(t) = 2α ProjTM,k

(

∑

j ajk(yj − yk)
)

. (10)

In the special case of a complete unit-weighted graph,

d
dt

yk(t) = 2αN ProjTM,k (Ce(t) − yk) . (11)

Proposition 3: A swarm of N agents moving according to

(10) on a manifold M satisfying Assumptions 1 and 2, with

fixed undirected G, always converges to a set of equilibrium

points. If α < 0, all asymptotically stable equilibria are anti-

consensus configurations for G. If α > 0, all asymptotically

stable equilibria are consensus configurations for G (in

particular, for the equally-weighted complete graph, the only

asymptotically stable configuration is synchronization).

Note that in Proposition 2, optimizing PL is a sufficient

condition to reach (anti-)consensus configurations. There-

fore, all stable equilibria of the gradient algorithm are

(anti-) consensus configurations, but there may also be (anti-)

consensus configurations that are unstable. For instance, for

a tree, maximization of PL always leads to synchronization,

although other consensus configurations can exist.

Formally, algorithm (10) can be written for directed and

even time-varying graphs, although the gradient property
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is lost. Nevertheless, using the argument of [18], it can

be shown that synchronization is still a stable equilibrium

(asymptotically stable if disconnected graph sequences are

excluded). Its basin of attraction includes the configurations

where all the agents are located in a convex set of M. On

the other hand, examples where algorithm (10) runs into

a limit cycle, quasi-periodic behavior,... can be built with

undirected varying G or with fixed directed G; see [21], [22]

for simple examples on S1. With directed and varying G,

there are even more possibilities. However, these examples

seem to be non-generic: performing simulations with random

graph sequences and initial conditions on S1, SO(n) and

Grass(p, n), the swarm seems to always eventually converge

to synchronization when α > 0.

It can be noted that the discrete-time version of (10)

yk(t+1) ∈ IAM ({yj(t)|j  k in G(t)} ∪ {yk(t)}) (12)

exactly corresponds to Vicsek’s phase update law on S1 (see

[32]), and readily generalizes it to manifolds.

Example 3: Denoting angular positions on S1 by θk, the

specific form of (10) is

d
dt

θk = α′
∑

j ajk sin(θk − θj) , k = 1...N . (13)

For the equally-weighted complete graph, this is strictly

equivalent to the Kuramoto model [14] with identical (zero)

natural frequencies. Algorithm (13) can e.g. run into a

limit cycle when the graph switches between two different

undirected rings.

On SO(n) and Grass(p, n), PL with matrix forms yk ∈
R

n×n becomes

PL(y) = 1
2N2

∑

j,k ajk trace(yT
j yk) . (14)

On SO(n), QT
j Qk ∈ SO(n) is the unique rotation matrix

translating Qj to Qk by matrix (group) multiplication on the

right. Previous work [6], [19] already use trace(QT
k Qj) as

a measure of disagreement on SO(3). The explicit form of

(10) is

QT
k

d
dt

Qk = α
∑

j ajk

(

QT
k Qj − QT

j Qk

)

. (15)

On Grass(p, n), (14) can be rewritten as

PL(Y) = 1
2N2

∑

j,k ajk

(
∑p

i=1 cos2(φi
jk)

)

with φi
jk the ith principal angle between subspaces Yj and

Yk. This formulation has previously appeared in e.g. [8].

Algorithm (10) writes

d
dt

Πk = 2α
∑

j ajk (ΠkΠjΠ⊥k + Π⊥kΠjΠk) (16)

where Π⊥ = I − Π, with I the identity matrix.

IV. ALGORITHMS WITH ESTIMATOR VARIABLES

The (anti-)consensus configurations reached with (10) are

directly linked to the interconnection graph G. In many appli-

cations, G is just a restriction on communication possibilities,

under which one actually wants to achieve a consensus for

the equally-weighted complete graph, i.e. synchronization

or balancing. This section presents algorithms achieving the

same performance as the complete graph gradient algorithm,

but under very weak conditions on the actual G(t). The

reduction of information channels is compensated by adding

a consensus estimator variable xk ∈ R
m to the state space

and communication of each agent.

For synchronization, the agents run a linear consensus

algorithm on their arbitrarily initialized estimator variables

xk in R
m; agent k’s position yk on M independently tracks

(the projection on M of) xk. This yields

d
dt

xk = β
∑

j ajk (xj − xk) (17)

d
dt

yk = γS gradk,M(yT
k xk) = γS ProjTM,k(xk) (18)

with β, γS > 0 for k = 1...N . Equation (17) is a classi-

cal consensus algorithm in R
m, exactly equivalent to (1).

According to e.g. [18], the xk exponentially converge to

a common value x∞ if G(t) is piecewise continuous in

time and uniformly connected. This leads to the following

convergence property, where IAMg generalizes (4) when the

points defining Ce are not on M.

Proposition 4: Assume that M satisfies Assumptions 1

and 2, and G(t) is piecewise continuous and uniformly

connected. Then the only stable limit configuration of the

yk under (17),(18), with the xk initialized arbitrarily but in-

dependently and such that they can take any value in an open

subset of R
m, is synchronization at y∞ = ProjTM,k(x∞);

if G(t) is balanced, then y∞ = IAMg{xk(0), k = 1...N}.

For anti-consensus, by analogy, each yk uses a gradient

algorithm to maximize its distance to xk(t). Algorithm

d
dt

xk = β
∑

j ajk (xj − xk) + d
dt

yk (19)

d
dt

yk = γB gradk,M(yT
k xk) = γB ProjTM,k(xk) (20)

with β > 0, γB < 0 for k = 1...N , ensures that all xk(t)
asymptotically converge to Ce(t) if G(t) is balanced ∀t and

xk(0) = yk(0) ∀k; then the motion (20) of yk asymptotically

becomes equivalent to (11). Note that the variables xk and

yk are fully coupled. This makes the convergence proof more

involved, but the general result remains.

Proposition 5: Assume that M satisfies Assumptions 1

and 2, and G(t) is piecewise continuous, uniformly con-

nected and balanced. Then algorithm (19),(20) with initial

conditions xk(0) = yk(0) ∀k converges to an equilibrium

configuration of (11) with α < 0.

In simulations, a swarm applying (19),(20) with xk(0) =
yk(0) ∀k seems to generically converge to an anti-consensus

configuration of the equally-weighted complete graph, that

is a stable equilibrium configuration of (11) with α < 0.

Example 4: Applying this strategy to the circle S1 yields

the results of [25]; the xk are vectors of R
2. On SO(n) and

Grass(p, n), introducing estimator variables Xk ∈ R
n×n,

(17) may be transcribed verbatim; (18) becomes respectively

QT
k

d
dt

Qk = γS

2

(

QT
k Xk − XT

k Qk

)

(21)

d
dt

Πk = γS (ΠkXkΠ⊥k + Π⊥kXkΠk) . (22)
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In [25], the algorithms including estimator variables are

expressed “relative to agent positions” on S1. The algorithms

for SO(n) can similarly be expressed completely in the

agents’ body frames: defining Zk = QT
k Xk, the agents only

need to know relative positions QT
k Qj and communicate

arrays of scalars Zk to implement e.g. (17),(18) by

d
dt

Zk = (QT
k

d
dt

Qk)T Zk (23)

+β
∑

j ajk

(

(QT
k Qj)Zj − Zk

)

QT
k

d
dt

Qk = γS

2

(

Zk − ZT
k

)

. (24)

V. GOSSIP ALGORITHM

The algorithms of the previous section use auxiliary vari-

ables xk which agents must memorize, update and com-

municate. This is not always possible in applications, nor

realistic to describe natural phenomena. Another possibility

to achieve global synchronization is to use a so-called “gos-

sip algorithm” [4] where at each time, each agent randomly

selects at most one of its neighbors in G(t) to update its

own phase value. For simplicity we here use discrete-time

dynamics; the convergence proof can be repeated with an

appropriate continuous-time version where agents are ε-close

to the discrete-time values at the end of a period. We consider

two variants.

Directed gossip: at each update t,

1. each agent k randomly selects a neighbor j  k with

probability ajk/ (β +
∑

l k alk), where β > 0 is the

weight for choosing no neighbor1;

2. yk(t+1) = yj(t) if agent k chooses neighbor j at time

t, and yk(t + 1) = yk(t) if it chooses no neighbor.

Undirected gossip: at each update t,

1. same procedure as in the directed case;

2. if at time t, k chooses j AND j chooses k, then yk(t+
1) = yj(t + 1) ∈ IAM(yk(t), yj(t)). If k chooses no

neighbor or a neighbor j which does not choose k,

then yk(t + 1) = yk(t).

In the directed variant, agents move between a finite

set of points fixed by their initial positions; the manifold

structure and topology plays no role. The undirected variant

was already proposed and analyzed on vector spaces (e.g.

convergence speed optimization in [4]), where it maintains
1
N

∑

k yk(t) = 1
N

∑

k yk(0) ∀t. This does not carry over

to manifolds, because the average on manifolds cannot be

computed by consecutive pairwise averaging; nevertheless

the more symmetric character of undirected gossip may

sometimes be preferred.

Proposition 6: Assume that G is uniformly connected

and β > 0 is fixed. Then N agents applying the directed

gossip algorithm, on any set, asymptotically synchronize

with probability 1. Also, N agents applying the undirected

gossip algorithm, on M the circle S1 or a sphere Sn−1,

asymptotically synchronize with probability 1.

1The neighbor chosen at t+1 is thus independent of the one chosen at t.

It must be noted that with both variants, the convergence

speed can be quite slow. The undirected variant speeds up

once all agents are located within a convex set of M.

VI. SENSITIVITY TO ATTRACTION PROFILE

The algorithms in the previous sections are based on an

attraction between agents proportional to their distance in

R
m (e.g. chordal distance for S1). This can also be viewed

as a particular dependence on the more classical geodesic

distance (e.g. sinusoidal function of arclength distance on

S1). One could naturally imagine other possibilities for agent

interactions, a.o. mimicking physical attraction laws. On

vector spaces, all these “attraction profiles” always lead to

synchronization, as can be seen e.g. by rewriting them as

a linear consensus algorithm with varying weights ajk. The

following shows that synchronization properties on the circle

S1 are sensitive to the attraction profile.

First consider N agents on S1 which instead of (13) apply,

for some b > 0 (see Fig.1),

d
dt

θk = α
∑

j ajk g(θj − θk) , k = 1...N , (25)

g(θ) =















−b
N−1(π + θ) for θ ∈ [−π,− π

N
]

b θ for θ ∈ [− π
N

, π
N

]

b
N−1(π − θ) for θ ∈ [ π

N
, π] .

(26)

Proposition 7: For any equally-weighted fixed undirected

G, synchronization is the only asymptotically stable equilib-

rium for N agents applying (25),(26) on S1.

(proof see [21])

Remember that in contrast, when applying (13) e.g. with

an undirected ring graph, there are stable “consensus” con-

figurations different from synchronization.
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θ
π

N

b π

N

π

6

-

f(θ)
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Fig. 1. Schematic representation of attraction profiles g(θ) and f(θ).
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Next consider the interaction (see Fig.1)

d
dt

θk = α
∑

j ajk f(θj − θk) , k = 1...N , (27)

f(θ) =



























Nb θ for θ ∈ [0, 5π
2N

]

4−5N
2 b θ + (8.75 − 5b

N
)π for θ ∈ [ 5π

2N
, 7π

2N
]

4b
7−2N

(θ − π) for θ ∈ [ 7π
2N

, π]

−f(−θ) for θ ∈ [−π, 0) .

(28)

For an equally-weighted complete graph, synchronization is

the only stable equilibrium under (13). One shows that, in

contrast, the configuration with N > 3 agents uniformly

distributed on the circle (i.e. separated by π/N ) is a stable

equilibrium when applying (27),(28) with b > 0.

Interactions that stabilize distributed configurations on S1

for equally-weighted complete G are proposed in [26]. The

goal here is to show that, locally, this can happen with

a nowhere repulsive interaction f(θ) close to the nicely

synchronizing g(θ). In conclusion, modifying the attraction

profile w.r.t. (13) can both enhance or deteriorate conver-

gence to synchronization. The proposed alternative attraction

profiles derive from alternative distance measures among

agents. They are not smooth, but our conclusions still hold

with smoothed (e.g. finite Fourier series) approximations.

VII. CONCLUSION

This paper extends the consensus algorithm framework

from vector spaces to connected compact homogeneous

manifolds. It builds gradient algorithms which can be seen

as the projection of linear consensus algorithms onto the em-

bedded manifold. These algorithms can converge to several

configurations, formalized as “consensensus configurations”,

depending on the communication graph and initial positions.

It is shown that unlike for vector spaces, convergence proper-

ties on the circle depend on the attraction profile among con-

nected agents. Further, means to generically achieve global

synchronization are proposed, using estimator variables or a

stochastic “gossip” setting. The (anti-)consensus algorithms

can also be used to distribute points on compact manifolds,

which may be useful for some applications.
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