
Monitors, Java, Threads and

Processes

185

An object-oriented view of
shared memory

• A semaphore can be seen as a shared object accessible through two

methods: wait and signal.

• The idea behind the concept of monitor is to generalize this to other

types of objects with other methods.

• If several processes can execute methods on the same object, the

interaction between these processes has to be managed:

– An appropriate level of atomicity has to be imposed in order to

guarantee that methods are executed correctly;

– A mechanism for suspending processes while they wait for a given

condition on the state of the shared object is needed.

186

Monitors : the concept

• A monitor is a class used in the context of concurrency. The instances

of the class will thus be objects simultaneously used by several

processes.

• Defining a monitor is done by defining the corresponding class. We

will use a Java inspired syntax.

187

A class example: stack

public class Stack {

protected static int max = 300;

private int nbElements;

private Object[] content;

public Stack()

{ nbElements = 0;

content = new Object[max];

}

public void push(Object e)

{

if (nbElements < max)

content[nbElements++] = e;

}

public Object pop()

{

if (nbElements > 0)

return content[--nbElements];

else

return null;

}

}

188

Monitors : a first synchronization rule

• Even for a class as simple as Stack, the simultaneous execution of

class methods by different processes can be problematic.

• A first synchronization rule imposed in the context of monitors is thus

the following:

The methods of a monitor are executed in mutual

exclusion.

Java Note. In Java, mutual exclusion of methods has to be explicitly

specified withe the keyword synchronized.

189

The producer-consumer problem in the context of
monitors

This is quite naturally solved with the following class.

public class PCbuffer

{

private Object buffer[]; /* Shared memory */

private int N; /* Buffer capacity */

private int count, in, out; /* nb of elements, pointers */

public PCbuffer(int argSize)

{ /* creation of a buffer of size

argSize */

N = argSize;

buffer = new Object[N];

count = 0; in = 0; out = 0;

}

190

public synchronized void append(Object data)

{

buffer[in] = data;

in = (in + 1) % N; count++;

}

public synchronized Object take()

{

Object data;

data = buffer[out];

out = (out + 1) % N;

count--; return data;

}

}

The required synchronization when the buffer is empty or full is obviously

missing.

191

Monitors: synchronization with wait queues

• In order to suspend processes when they cannot execute the required

operation, we will use wait queues.

• These queues are managed using three operations.

– qWait() : suspends the process executing this operation and places

it in the queue.

– qSignal() : frees the first process in the wait queue (has no effect if

the queue is empty).

– qNonempty() : tests that the queue is not empty.

• When a process is suspended and placed in the queue with the

operation qWait(), it relinquishes the mutual exclusion linked to the

execution of a monitor method.

192

Wait queues viewed as a class

Wait queues are viewed as objects instantiated form the following class
whose full definition will be given later.

public class Waitqueue

{ /* data (to be defined) */

public Waitqueue()

{ /* constructor (to be defined) */

}

public void qWait()

{ /* wait operation */

}

public void qSignal()

{ /* signal operation (allows a waiting process

to resume its execution) */

}

public boolean qNonempty()

{ /* tests that the queue is not empty */

}

}

193

The producer-consumer problem with wait queues

To synchronize the producers and consumers, two wait queues will be

used: one for the processes waiting for an element to consume, one for

the processes waiting for available space in the buffer.

public class PCbuffer

{

private Object buffer[]; /* Shared memory */

private int N ; /* Buffer capacity */

private int count, in, out; /* nb of elements, pointers */

private Waitqueue notfull, notempty; /* wait queues */

public PCbuffer(int argSize)

{ N = argSize; /* creating a buffer of size

buffer = new Object[N]; argSize */

count = 0; in = 0; out = 0;

notfull = new Waitqueue(); notempty = new Waitqueue();

}

194

public synchronized void append(Object data)

{ if (count == N) notfull.qWait();

buffer[in] = data;

in = (in + 1) % N; count++;

notempty.qSignal();

}

public synchronized Object take()

{ Object data;

if (count == O) notempty.qWait();

data = buffer[out];

out = (out + 1) % N;

count--; notfull.qSignal();

return data;

}

}

The operation qSignal has no effect if the queue is empty. Thus this
solution avoids the double signaling problem encountered when using
binary semaphores.

195

Priorities when executing a qSignal operation

• When a qSignal operation is executed, the process at the head of the

wait queue is freed, but a priori this does not mean that it will

immediately resume its execution.

• This is potentially problematic since the situation that triggered the

qSignal operation (for instance a nonempty buffer) might no longer be

true when the freed process actually resumes its execution (for

instance because another process has taken the only remaining

element in a nonempty buffer).

196

• To avoid this, the following rule is imposed on monitor

synchronization:

Immediate resumption: the process freed by a qSignal

operation has priority over all other processes attempting

to execute and operation on the object for which the wait

queue is used.

• How about the process executing the qSignal operation ?

– The process executing the qSignal operation has priority to finish

executing the method it is currently in, as soon as the freed process

has completed its own monitor method.

197

Semaphores viewed a monitors

With the wait queue mechanism, semaphores can easily be implemented

as monitors. This also allows defining other operations on semaphores, in

particular testing the number of processes waiting on the semaphore,

which we will make use of later.

public class Semaphore

{ int value; /* The value of the semaphore */

int nbWait = 0; /* The number of waiting processes */

Waitqueue queue;

public Semaphore(int inival)

{ value = inival;

queue = new Waitqueue();

}

198

public synchronized void semWait()

{ if (value <= 0)

{ nbWait++;

queue.qWait();

nbWait--;

}

value--;

}

public synchronized void semSignal()

{ value++; queue.qSignal();

}

public synchronized int semNbWait()

{ return nbWait;

}

Note that immediate resumption is essential for this implementation to be

correct.

199

Implementing wait queues

• Obviously, implementing wait queues requires a mechanism for

suspending processes that has to be provided by the program

execution environment.

• We will temporarily ignore this problem, assuming that we have access

to semaphores with a direct implementation that does not use queues

as above.

• Immediate resumption requires special attention since it establishes a

link between the wait queues and mutual exclusion of the monitor

methods. We will first examine an implementation that does not

guarantee immediate resumption, taking this constraint into account

at a later stage.

200

Implementing wait queues without immediate
resumption

A queue is implemented with a semaphore (assumed to be FIFO) whose

value is always 0.

public class Waitqueue

{ private int qcount = 0; /* The number of waiting processes */

private Semaphore Qsem;

public Waitqueue()

{ Qsem = new Semaphore(0);

/* creating the semaphore initialized to 0 */

}

public void synchronized qWait() /* wait operation */

{ qcount++; Qsem.semWait(); qcount--;

}

201

public void synchronized qSignal() /* signal operation */

{ if (qcount > 0) Qsem.semSignal();

}

public boolean synchronized qNonempty()

{ return qcount == 0; /* testing if the queue is non empty */

}

}

Independently of the problem linked to immediate resumption, this

solution is prone to potential deadlocks linked to the multiple use of the

synchronized attribute.

202

Note on Java : synchronized and locks

• A method declared as synchronized is executed in mutual exclusion
with respect to the other methods operating on the same object.

• This can be understood by considering that there is a lock (possibly
implemented by a semaphore) linked to the object.

• When a synchronized method calls a synchronized method of another
object, locking on this new object also occurs.

• A problem appears when a process is suspended and enters a wait
state. When this happens, locks must be freed, but this is hard to do
if a sequence of lock operations have been performed.

• In Java, the basic wait operation (see further down) only frees the
lock on the current object.

203

Implementing queues with immediate resumption

• To solve both the problem of immediate resumption and that of

multiple locks, we will manage mutual exclusion between monitor

methods explicitly with a semaphore.

• When a process will be suspended, the operation qWait will explicitly

free the mutual exclusion associated with the method calling the

operation qWait.

• In order to do this, an argument giving the mutual exclusion

semaphore to be freed will be given to qWait, as well as to qSignal in

order to be able to handle immediate resumption.

204

An implementation of queues with immediate
resumption (continued)

public class Waitqueue

{ private int qcount = 0; /* the number of waiting processes */

private Semaphore Qsem;

public Waitqueue()

{ Qsem = new Semaphore(0);

/* creating a semaphore initialized to 0 */

}

public void qWait(Semaphore Mutsem)

/* wait operation */

{ qcount++; Mutsem.semSignal(); Qsem.semWait(); qcount--;

}

205

public void qSignal(Semaphore Mutsem)

/* signal operation */

{ if (qcount > 0) {

Qsem.semSignal(); Mutsem.semWait();

}

}

public boolean qNonempty()

{ return qcount == 0; /* testing if the queue is nonempty */

}

}

To prevent deadlocks, mutual exclusion is not imposed on the wait queue

operations. Undesired interference is nevertheless impossible since a queue

is only used by a single shared object and since the methods operating on

this object are already executed in mutual exclusion.

206

The buffer using queues implemented by semaphores

public class PCbuffer

{

private Object buffer[]; /* Shared memory */

private int N ; /* Buffer Capacity */

private int count, in, out; /* nb of elements, pointers */

private Waitqueue notfull, notempty; /* wait queues */

private mutex Semaphore; /* mutual exclusion semaphore */

public PCbuffer(int argSize)

{ N = argSize;

buffer = new Object[N];

count = 0; in = 0; out = 0;

notfull = new Waitqueue(); notempty = new Waitqueue();

mutex = new Semaphore(1);

}

207

public void append(Object data)

{ mutex.semWait()

if (count == N) notfull.qWait(mutex);

buffer[in] = data;

in = (in + 1) % N; count++;

notempty.qSignal(mutex);

mutex.semSignal();

}

public Object take()

{ Object data;

mutex.semWait()

if (count == O) notempty.qWait(mutex);

data = buffer[out];

out = (out + 1) % N;

count--;

notfull.qSignal(mutex);

mutex.semSignal(); return data;

}

}

208

Priority of processes having executed an operation
qSignal

• In the implementation above, priority is not given to the process
having executed the operation qSignal.

• For doing this, a second mutual exclusion semaphore urgent will be
used.

• The operation qWait will be called with the mutual exclusion
semaphore, or with the semaphore urgent, depending on whether
processes are waiting on the latter of not.

• To achieve this, the number of processes waiting on urgent will be
counted explicitly. Indeed, a call to semNbWait(urgent) does not count
the processes that have executed an operation qSignal, are going to
wait on urgent, but have not yet done so.

• At the end of a method, the operation semSignal is executed on urgent

if a process is waiting on this semaphore; if not the the operation is
executed on the mutual exclusion semaphore.

209

An implementation of wait queues with immediate
resumption and priority to the ”signaling” process

public class PCbuffer

{

private Object buffer[]; /* Shared memory */

private int N ; /* Buffer capacity */

private int count, in, out; /* nb of elements, pointers */

private Waitqueue notfull, notempty; /* wait queues */

private Semaphore mutex, urgent; /* semaphores */

private int urcount; /* nb of processes waiting on

urgent */

public PCbuffer(int argSize)

{ N = argSize;

buffer = new Object[N];

count = 0; in = 0; out = 0; urcount = 0;

notfull = new Waitqueue(); notempty = new Waitqueue();

mutex = new Semaphore(1); urgent = new Semaphore(0);

}

210

public void append(Object data)

{ mutex.semWait()

if (count == N) {

if (urcount > 0) notfull.qWait(urgent);

else notfull.qWait(mutex);

}

buffer[in] = data;

in = (in + 1) % N; count++;

urcount++;

notempty.qSignal(urgent);

urcount--;

if (urcount > 0) urgent.semSignal();

else mutex.semSignal();

}

211

public Object take()

{ Object data;

mutex.semWait()

if (count == 0) {

if (urcount > 0) notempty.qWait(urgent);

else notempty.qWait(mutex);

}

data = buffer[out];

out = (out + 1) % N;

count--;

urcount++;

nofull.qSignal(urgent);

urcount--;

if (urcount > 0) urgent.semSignal();

else mutex.semSignal();

return data;

}

}

212

Note on Java : Implementing semaphores

• To avoid circularity in the implementation of monitors, an

implementation of semaphores that does not use the wait queues we

have defined is needed.

• Java has the necessary primitive to make such an implementation

possible.

– First, the synchronized attribute of a method guaranteed that it will

be executed in mutual exclusion.

– Furthermore, Java provides methods for suspending and

reactivating processes: wait(), notify() et notifyAll().

213

Note on Java : wait and notify

• wait() : Suspends the current process and frees mutual exclusion with

respect to the current object.

• notify() : Selects a process waiting on the current object and makes

it executable. The selected process must reacquire mutual exclusion

(there is no immediate resumption).

• notifyAll() : Similar to notify(), but makes executable all processes

that are waiting on the current object.

214

A first implementation of semaphores in Java

public class Semaphore

{ private int value; /* the value of the semaphore */

private int nbWait = 0; /* nb waiting */

public Semaphore(int inival)

{ value = inival;

}

public synchronized void semWait()

{ while (value <= 0)

{ nbWait++;

wait();

}

value--;

}

Since there is no immediate resumption, the value of the semaphore has

to be tested after returning from the call to wait().

215

public synchronized void semSignal()

{ value++;

if (nbWait > 0)

{ nbWait--; notify();

}

}

public synchronized int semNbWait()

{ return nbWait;

}

}

The operation nbWait-- is done in semSignal() just before notify()

because, given that there is no immediate resumption, executing this
operation in semWait() after wait() could lead to an incorrect value being
returned by semNbWait().

The semantics of wait() and notify() imply that this implementation is
not fair.

216

A fair implementation of semaphores in Java

• To obtain a fair implementation, the wait queue has to be explicitly

implemented.

• The queue will be a queue of objects on each of which a single

process will be waiting.

• The fact that there is no fairness for notify() operations will thus not

be a problem.

217

A fair implementation of semaphores in Java (continued)

The class Queue implements a classical wait queue.

public class SemaphoreFIFO

{ private int value; /* the value of the semaphore */

private int nbWait = 0; /* nb waiting */

private Queue theQueue; /* The explicit wait queue */

public SemaphoreFIFO(int inival)

{ value = inival;

theQueue = new Queue();

}

218

public void semWait()

{ Semaphore semElem;

synchronized(this){

if (value == 0)

{ semElem = new Semaphore(0);

theQueue.enqueue(semElem);

nbWait++;

}

else

{

semElem = new Semaphore(1);

value--;

}

} /* synchronized */

semElem.semWait();

}

The operation semElem.semWait() is withdrawn from the mutual exclusion
to avoid double locking. Note the different initialization of semElem

depending on whether value is at 0 or not.

219

public synchronized void semSignal()

{ Semaphore semElem;

if (!theQueue.empty()){

semElem = theQueue.dequeue();

nbWait--; semElem.semSignal();

}

else value++;

}

public synchronized int semNbWait()

{ return nbWait;

}

}

The operation semSignal() frees the process blocked on the first element

in the queue, if there is one. If not value is incremented.

220

Processes and Threads

In Java one talks of Threads and not processes. What is the difference?

• A “thread” corresponds to an execution having its own control flow.

• Threads can be implemented by processes, but this has several

drawbacks.

– Processes operate in distinct virtual spaces. Sharing objects

between threads would thus be rather cumbersome to organize.

– Given the strong separation between the contexts of different

processes, switching from one process to another is a heavy and

thus slow operation.

221

Processes and Threads (continued)

• Several current operating systems provide support for threads or “light

processes”. These processes differ from traditional processes being

designed to cooperate (sharing for example the same virtual space)

rather than working in completely distinct contexts.

– System threads have appeared as a tool to make use of parallel

machines.

– Java threads can be implemented by system threads.

• Java threads can also be implemented within a system process by

including a simple task manager in the code to be executed.

222

