
The “pipeline” technique

and the β machine

296

Review : a “one cycle” implementation of β

1 0ASEL

WDSEL1 20

ALUFN Wr

DATA
MEMORY

R/WWD

RDAdr

0 1 RA2SEL

Rc:<25:21>Rb:<15:11>Ra:<20:16>

Op
Ill

012PCSEL

XAdr JT

4 3

PC 00

1 0 BSEL

A

D

INSTRUCTION
MEMORY

+4

+

WASEL
WERF
Wr
ALUFN
WDSEL

BSEL
ASEL
RA2SEL
PCSEL

REGISTER
FILE

WERF

PC+4

A B

ALU

C:SXT(<15:0>)

PC+4+4*SXT(C)

CONTROL  LOGIC

Z

WA

RD1 RD2 WE

WD

RA2RA1

IRQ Z

JT

WASEL

XP 1

0
Rc:<25:21>

297

The basic idea of a pipeline

• A pipeline is useful to increase the rate at which a deep combinatorial

circuit can process data.

• Setting up a pipeline is done is done by splitting the circuit into layers

(or stages) and separating these layers with registers.

• The data is saved in the registers between successive layers. Several

cycles are needed to process the data, but each cycle can be

substantially shorter.

• The transit time of the data through the circuit is unchanged or

slightly increased, but the rate at which data can be provided to the

circuit is significantly increased.

298

The basic idea of a pipeline: illustration

output register

clock: 

output register

clock: 

logic 1

logic 2

input register

logic

input register

logic 3

299



A pipeline for the β machine

• In the implementation of the β machine under consideration, the

combinatorial logic is composed of four clearly identifiable stages.

– Reading the instruction from memory: Instruction Fetch (IF);

– Reading the arguments in the registers: Register Fetch (RF);

– Computation by the ALU: ALU;

– Reading data from memory (instruction LD): Memory (MEM);

– and ends with the result being written back to the registers:Write

Back (WB).

• A pipeline with four stages would thus be a natural choice. However,

to simplify the presentation, we will start with a 2-stage pipeline: IF et

EXE (execute).

300

A β machine with a 2-stage pipeline

1 0ASEL

WDSEL1 20

ALUFN Wr

DATA
MEMORY

R/WWD

RDAdr

Z

WASEL
WERF
Wr
ALUFN
WDSEL

BSEL
ASEL
RA2SEL
PCSEL

ZIRQ

CONTROL  LOGIC

0 1 RA2SEL

Rc:<25:21>Rb:<15:11>Ra:<20:16>

1 0 BSEL

REGISTER
FILE

WERF

WA

RD1 RD2 WE

WD

RA2RA1

+

+4

PC 00IF

Op
Ill

012PCSEL

XAdr JT

4 3

A

D

INSTRUCTION
MEMORY

IR 00EXEPC 00EXE

PC+4

A B

ALU

C:SXT(<15:0>)

PC+4+4*SXT(C)

WASEL

XP 1

0
Rc:<25:21>

JT

301

The operation of the 2-stage pipeline

At all times, two instructions are being executed: one at the IF stage, one

at the EXE stage.

Consider, for example, the following program: ADDC(r1, 1, r2)

SUBC(r1, 1, r3)

XOR(r1, r5, r1)

MUL(r2, r6, r0)

The state of the pipeline evolves as described below.

IF

EXE

ADDC SUBC XOR MUL

ADDC SUBC XOR MUL

...

...

i i+1 i+2 i+3 i+4 i+5 i+6

time

302

The operation of the 2-stage pipeline:
The problem with jumps

When a jump or branch (JMP or BXX) instruction appears, a problem

occurs since the next instruction has already been read.

Let’s consider for example: LOOP: ADD(r1, r3, r3)

CMPLEC(r3, 100, r0)

BT(r0, LOOP)

XOR(r3, -1, r3)

If the branch has to be executed, the pipeline is in an incoherent state.

IF

EXE

CMP XOR ...

...

i i+1 i+2 i+3 i+4 i+5 i+6

time

ADD BT

ADD CMP BT ???

303



The operation of the 2-stage pipeline:
Solutions to the branch/jump problem

The are two types of solutions for this problem.I

• Hardware solutions: the hardware “cancels” the instruction following

jumps that are followed.

• Software solutions : a branch/jump is always followed by an

instruction that does nothing (NOP), or by a non problematic useful

instruction.

304

A β machine with a 2-stage pipeline
A hardware solution to the jump/branch problem

1 0ASEL

WDSEL1 20

ALUFN Wr

DATA
MEMORY

R/WWD

RDAdr

Z

0 1 RA2SEL

Rc:<25:21>Rb:<15:11>

1 0 BSEL

+

+4

PC 00IF

Op
Ill

012PCSEL

XAdr JT

4 3

A

D

INSTRUCTION
MEMORY

IR 00EXEPC 00EXE

WASEL
WERF
Wr
ALUFN
WDSEL

ZIRQ

REGISTER
FILE

WERF

PC+4

A B

ALU

C:SXT(<15:0>)

PC+4+4*SXT(C)

NOP

10 ANNUL

CONTROL  LOGIC

BSEL
ASEL
RA2SEL
PCSEL

ANNUL

JT

Ra:<20:16>

WA

RD1 RD2 WE

WD

RA2RA1

WASEL

XP 1

0
Rc:<25:21>

305

A β machine with a 2-stage pipeline
A hardware solution to the jump/branch problem –

example

For the following program LOOP: ADD(r1, r3, r3)

CMPLEC(r3, 100, r0)

BT(r0, LOOP)

XOR(r3, -1, r3)

If the branch is executed, the pipeline behaves as follows.

IF

EXE

CMP XOR

i i+1 i+2 i+3 i+4 i+5 i+6

time

ADD BT

ADD CMP BT

ADD CMP BT

ADDXOR

NOP

CMP

306

A β machine with a 2-stage pipeline
A first software solution – example

A NOP instruction is added added after the branch.

LOOP: ADD(r1, r3, r3)

CMPLEC(r3, 100, r0)

BT(r0, LOOP)

NOP()

XOR(r3, -1, r3)

The NOP instruction is always executed after the branch but has no effect.

IF

EXE

CMP

i i+1 i+2 i+3 i+4 i+5 i+6

time

ADD BT

ADD CMP BT ADD CMP

NOP

NOP

ADD CMP

307



A β machine with a 2-stage pipeline
A second software solution – example

The preceeding program is rewritten as follows.

LOOP: ADD(r1, r3, r3)

LOOPx: CMPLEC(r3, 100, r0)

BT(r0, LOOPx)

ADD(r1, r3, r3)

SUB(r3, r1, r3)

XOR(r3, -1, r3)

The instruction inserted after the BT is an instruction that must anyway

be executed after the branch is taken (the majority of cases) and the

effect of this instruction is compensated for if the branch is not followed.

Note that this program is not correct on a machine without a pipeline.

308

A β machine with a 4-stage pipeline

• The following figure shows an outline of an implementation of the β

machine with a 4-stage pipeline.

• The stages are: IF, RF, ALU, and MEM/WB.

• The registers appear as a combinatorial circuit when read from, and as

a clocked circuit when written to.

• The registers appearing at the bottom of the figure are identical to

those appearing at the top.

309

1 0ASEL

Z

Ra:<20:16>

+

+4

PC 00IF

Op
Ill

012PCSEL

XAdr JT

4 3

A

D

INSTRUCTION

MEMORY

PC 00EXE IR

ALUFN

A B

ALU

DALUPC 00ALU BAIRALU

Rc:<25:21>

XP

0 1WASEL WDSEL1 20

WERF

REGISTER

FILE
WE

WDWANB : RF identical
to the one above.

PC 00MEM IRMEM YMEM DMEM

Wr
DATA

MEMORY

R/WWD

RD

Adr

1 0 BSEL

0 1 RA2SEL

Rc:<25:21>Rb:<15:11>

REGISTER

FILE
WA

RD1

RA1

RD2

RA2

C:SXT(<15:0>)

PC+4+4*SXT(C)

EXE

JT

310

The operation of the 4-stage pipeline

At any time, there are four instructions being executed.

Consider for example the following program: ADDC(r1, 1, r2)

SUBC(r1, 1, r3)

XOR(r1, r5, r1)

MUL(r2, r6, r0)

The state of the pipeline evolves as described below.

IF

RF

ADDC SUBC XOR MUL

ADDC SUBC XOR MUL

...

...

i i+1 i+2 i+3 i+4 i+5 i+6

time

ALU

WB

ADDC

ADDC

SUBC

SUBC

XOR

XOR

MUL

MUL

311



The operation of the 4-stage pipeline: the problem with
data conflicts

Consider for example the following program: ADD(r1, r2, r3)

CMPLEC(r3, 100, r0)

MULC(r1, 100, r4)

SUB(r1, r2, r5)

The instruction CMPLEC needs at time i+2 the content of the register r3

that will only be written at the end of cycle i+3.

IF

RF

ADD CMP MUL SUB ...

...

i i+1 i+2 i+3 i+4 i+5 i+6

time

ALU

WB

ADD

ADD

ADD

CMP

CMP

CMP

MUL

MUL

MUL

SUB

SUB

SUB

312

The operation of the 4-stage pipeline: the problem with
data conflicts – software solution

A first solution is to modify the program in order to eliminate data

conflicts.

ADD(r1, r2, r3)

CMPLEC(r3, 100, r0)

MULC(r1, 100, r4)

SUB(r1, r2, r5)

becomes ADD(r1, r2, r3)

MULC(r1, 100, r4)

SUB(r1, r2, r5)

CMPLEC(r3, 100, r0)

313

The operation of the 4-stage pipeline: the problem with
data conflicts – hardware solution 1

A hardware solution is to block the pipeline (and insert NOP instructions)

when there are data conflicts.

IF ADD CMP MUL

i i+1 i+2 i+3 i+4 i+5 i+6

time

ALU

WB

ADD

ADD

ADD

CMP

SUBMUL MUL

SUBMULCMP CMP

MULCMP

CMP

NOP NOP

NOP NOP

RF

314

The operation of the 4-stage pipeline: the problem with
data conflicts – hardware solution 2

• A second hardware solution introduces bypass paths that make it

possible to use directly the output of the ALU, instead of the output

of the registers.

• It is also necessary to have access to the output of the WB stage,

when the conflicting instructions are separated by another instruction.

instruction.

315



Bypass paths 1

REGISTER
FILE

ALUFN

A B

ALU

IRALU B

IRMEM

REGISTER
FILE

WE

WDWA

IREXE

A

RD1

RA1 RA2

RD2

Y MEM

BYPASSES
MUXES

316

Bypass paths 2

REGISTER
FILE

Y MEM

IRALU

IRMEM

REGISTER
FILE

WE

WDWA

IREXE

BA

RD1

RA1 RA2

RD2

A B

ALU

BYPASSES
MUXES

317

Other problems to consider with respect to pipelines

• The conflict between a LD instruction and the instruction just following

it cannot be solved by a bypass path.

• Reading from memory might be slow, which forces a longer cycle

time. One solution is to add a pipeline stage and allow two cycles for

memory reads.

• When executing a branch/jump, the correct LP must be saved, and

similarly for XP upon exceptions. The requirement is to maintain

coherence between the return address saved and what has already

been executed.

318


