Chapter 8
Complexity
8.1 Introduction

- Solvable problems versus efficiently solvable problems.

- Measuring complexity: complexity functions.

- Polynomial complexity.

- NP-complete problems.
8.2 Measuring complexity

- Abstraction with respect to the machine being used.

- Abstraction with respect to the data (data size as only parameter).

- O notation.

- Efficiency criterion: polynomial.
8.3 Polynomial problems

• Influence of the encoding.
• Graph example.
• Reasonable encodings:
 – no padding,
 – polynomial decoding,
 – unary representation of numbers not allowed.
Complexity and Turing machines

Time complexity of a Turing machine that always stops:

\[T_M(n) = \max \{ m \mid \exists x \in \Sigma^*, |x| = n \text{ and the execution of } M \text{ on } x \text{ is } m \text{ steps long} \} \]

A Turing machine is polynomial if there exists a polynomial \(p(n) \) such that

\[T_M(n) \leq p(n) \]

for all \(n \geq 0 \).

The class P is the class of languages that are decided by a polynomial Turing machine.
8.4 Polynomial transformations

- Diagonalisation is not adequate to prove that problems are not in P.

- Another approach: comparing problems.
The Travelling Salesman (TS)

• Set C of n Cities.

• Distances $d(c_i, c_j)$.

• A constant b.

• Is there a permutation of the towns such that:

$$\sum_{1 \leq i < n} d(c_{p_i}, c_{p_{i+1}}) + d(c_{p_n}, c_{p_1}) \leq b.$$
Hamiltonian Circuit (HC)

- Graph $G = (V, E)$

- Is there a closed circuit in the graph that contains each vertex exactly once.
Definition of polynomial transformations

Goal: to establish a link between problems such as HC and TS (one is in P if and only if the other is also in P).

Definition:
Consider languages \(L_1 \in \Sigma_1^* \) and \(L_2 \in \Sigma_2^* \). A polynomial transformation from \(L_1 \) to \(L_2 \) (notation \(L_1 \propto L_2 \)) is a function \(f : \Sigma_1^* \rightarrow \Sigma_2^* \) that satisfies the following conditions:

1. it is computable in polynomial time,

2. \(f(x) \in L_2 \) if and only if \(x \in L_1 \).
The set of cities is identical to the set of vertices of the graph, i.e. $C = V$.

The distances are the following $(c_i, c_j) = \begin{cases} 1 & \text{si } (c_i, c_j) \in E \\ 2 & \text{si } (c_i, c_j) \notin E \end{cases}$.

The constant b is equal to the number of cities, i.e. $b = |V|$.

$HC \propto TS$
Properties of \propto

If $L_1 \propto L_2$, then

• if $L_2 \in P$ then $L_1 \in P$,

• if $L_1 \notin P$ then $L_2 \notin P$.

If $L_1 \propto L_2$ et $L_2 \propto L_3$, then

• $L_1 \propto L_3$.
Polynomially equivalent problems

Definition
Two languages L_1 and L_2 are polynomially equivalent (notation $L_1 \equiv_P L_2$) if and only if $L_1 \preceq L_2$ and $L_2 \preceq L_1$.

- Classes of polynomially equivalent problems: either all problems in the class are in P, or none is.
- Such an equivalence class can be built incrementally by adding problems to a known class.
- We need a more abstract definition of the class containing HC and TS.
The class NP

- The goal is to characterise problems for which it is necessary to examine a very large number of possibilities, but such that checking each possibility can be done quickly.

- Thus, the solution is fast, if enumerating the possibilities does not cost anything.

- Modelisation : nondeterminism.
The complexity of nondeterministic Turing machines

The execution time of a nondeterministic Turing machine on a word w is given by

- the length of the **shortest** execution accepting the word, if it is accepted,
- the value 1 if the word is not accepted.

The time complexity of M (non deterministic) is the function $T_M(n)$ defined by

$$T_M(n) = \max \{ m | \exists x \in \Sigma^*, |x| = n \text{ and the execution time of } M \text{ on } x \text{ is } m \text{ steps long} \}.$$
The definition of NP

Définition
The class NP (from Nondeterministic Polynomial) is the class of languages that are accepted by a polynomial nondeterministic Turing machine.

Exemple
HC and TS are in NP.
Theorem

Consider $L \in \text{NP}$. There exists a deterministic Turing machine M and a polynomial $p(n)$ such that M decides L and has a time complexity bounded by $2^{p(n)}$.

Let M_{nd} be a nondeterministic machine of polynomial complexity $q(n)$ that accepts L. The idea is to simulate all executions of M_{nd} of length less than $q(n)$. For a word w, the machine M must thus:

1. Determine the length n of w and compute $q(n)$.

2. Simulate each execution of M_{nd} of length $q(n)$ (let the time needed be $q'(n)$). If r is the largest number of possible choices within an execution of M_{nd}, there are at most $rq(n)$ executions of length $q(n)$.
3. If one of the simulated executions accepts, M accepts. Otherwise, M stops and rejects the word w.

Complexity: bounded by $rq(n) \times q'(n)$ and thus by $2^{\log_2(r)(q(n)+q'(n))}$, which is of the form $2^{p(n)}$.
The structure of NP

Definition A polynomial equivalence class C_1 is smaller than a polynomial equivalence class C_2 (notation $C_1 \preceq C_2$) if there exists a polynomial transformation from every language in C_1 to every language in C_2.

Smallest class in NP : P

- The class NP contains the class P ($P \subseteq NP$).
- The class P is a polynomial equivalence class.
- For every $L_1 \in P$ and for every $L_2 \in NP$, we have $L_1 \propto L_2$.
Largest class in NP : NPC

A language L is NP-complete if

1. $L \in \text{NP},$

2. for every language $L' \in \text{NP},$ $L' \propto L.$

Theorem
If there exists an NP-complete language L decided by a polynomial algorithm, then all languages in NP are polynomially decidable, i.e. $P = \text{NP}.$

Conclusion : An NP-complete problem does not have a polynomial solution if and only if $P \neq \text{NP}$
Proving NP-completeness

To prove that a language L is NP-complete, one must establish that

1. it is indeed in the class NP ($L \in NP$),

2. for every language $L' \in NP$, $L' \propto L$,

or, alternatively,

3. There exists $L' \in NPC$ such that $L' \propto L$.

Concept of NP-hard problem.
A first NP-complete problem
propositional calculus

Boolean calculus:

\[
\begin{array}{c|c}
p & \neg p \\
0 & 1 \\
1 & 0 \\
\end{array}
\quad \begin{array}{c|c|c}
p & q & p \land q \\
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
p & q & p \lor q \\
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1 \\
\end{array}
\quad \begin{array}{c|c|c}
p & q & p \supset q \\
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
\end{array}
\]
• Boolean expression: \((1 \land (0 \lor (\neg 1))) \supset 0\).

• Propositional variables and propositional calculus:
 \((p \land (q \lor (\neg r)))) \supset s\).

• Interpretation function. Valid formula, satisfiable formula.

• Conjunctive normal form: conjunction of disjunctions of literals.
Cook’s theorem

SAT Problem: satisfiability of conjunctive normal form propositional calculus formulas.

Theorem
The SAT problem is NP-complete

Proof

1. SAT is in NP.

2. There exists a polynomial transformation from every language in NP to L_{SAT}.
 - Transformation with two arguments: word and language.
 - The languages of NP are characterised by a polynomial-time nondeterministic Turing machine.
Word w ($|w| = n$) and nondeterministic polynomial Turing machine $M = (Q, \Gamma, \Sigma, \Delta, s, B, F)$ (bound $p(n)$).

Description of an execution of M (T : tape; Q : state; P : position; C : choice.)

\[
\begin{array}{c|c|c|c|c}
Q & P & C & T \\
\hline
\vdots & \vdots & \vdots & \vdots \\
\end{array}
\]

\[
p(n) + 1
\]

\[
p(n) + 1
\]
Representing an execution with propositional variables:

1. A proposition $t_{ij\alpha}$ for $0 \leq i, j \leq p(n)$ and $\alpha \in \Gamma$.

2. A proposition $q_{i\kappa}$ for $0 \leq i \leq p(n)$ and $\kappa \in Q$.

3. A proposition p_{ij} for $0 \leq i, j \leq p(n)$.

4. A proposition c_{ik} for $0 \leq i \leq p(n)$ and $1 \leq k \leq r$.
Formula satisfied only by an execution of M that accepts the word w:

conjunction of the following formulas.

$$\bigwedge_{0 \leq i, j \leq p(n)} \left[\left(\bigvee_{\alpha \in \Gamma} t_{ij\alpha} \right) \wedge \bigwedge_{\alpha \neq \alpha' \in \Gamma} \left(\neg t_{ij\alpha} \lor \neg t_{ij\alpha'} \right) \right]$$

One proposition for each tape cell. Length $O(p(n)^2)$.

$$\bigwedge_{0 \leq i \leq p(n)} \left[\left(\bigvee_{0 \leq j \leq p(n)} p_{ij} \right) \wedge \bigwedge_{0 \leq j \neq j' \leq p(n)} \left(\neg p_{ij} \lor \neg p_{ij'} \right) \right]$$

One proposition for each position. Length $O(p(n)^3)$.
\[
\left[\bigwedge_{0 \leq j \leq n-1} t_{0j} w_{j+1} \land \bigwedge_{n \leq j \leq p(n)} t_{0j} B \right] \land q_0 s \land p00
\]

Initial state. Length \(O(p(n)) \)

\[
\bigwedge_{0 \leq i < p(n)} \bigwedge_{0 \leq j \leq p(n)} \bigg[\begin{array}{c}
(t_{ij\alpha} \land \neg p_{ij}) \supset t_{(i+1)j\alpha} \\
\alpha \in \Gamma
\end{array} \bigg]
\]

Transitions, tape not modified. Length \(O(p(n)^2) \).
\begin{equation*}
\bigwedge_{0 \leq i < p(n)} \bigwedge_{0 \leq j \leq p(n)} \bigwedge_{\alpha \in \Gamma} \bigwedge_{1 \leq k \leq r}
\left[
\left((q_{i\kappa} \land p_{ij} \land t_{ij\alpha} \land c_{ik}) \supset q(i+1)\kappa')\land
\left((q_{i\kappa} \land p_{ij} \land t_{ij\alpha} \land c_{ik}) \supset t(i+1)j\alpha')\land
\left((q_{i\kappa} \land p_{ij} \land t_{ij\alpha} \land c_{ik}) \supset p(i+1)(j+d))
\right]\right]
\end{equation*}

\begin{equation*}
\bigwedge_{0 \leq i < p(n)} \bigwedge_{0 \leq j \leq p(n)} \bigwedge_{\alpha \in \Gamma} \bigwedge_{1 \leq k \leq r}
\left[
\left(\neg q_{i\kappa} \lor \neg p_{ij} \lor \neg t_{ij\alpha} \lor \neg c_{ik} \lor q(i+1)\kappa')\land
\left(\neg q_{i\kappa} \lor \neg p_{ij} \lor \neg t_{ij\alpha} \lor \neg c_{ik} \lor t(i+1)j\alpha')\land
\left(\neg q_{i\kappa} \lor \neg p_{ij} \lor \neg t_{ij\alpha} \lor \neg c_{ik} \lor p(i+1)(j+d))
\right]\right]
\end{equation*}

Transitions, modified part. Length $O(p(n)^2)$.

259
\[
\bigvee_{0 \leq i \leq p(n)} [q_{i\kappa}]
\]

Final state reached. Length $O(p(n))$.

- Total length of the formula $O(p(n)^3)$.
- The formula can be built in polynomial time.
- Thus, we have a transformation that is polynomial in terms of $n = |w|$.
- The formula is satisfiable if and only if the Turing machine M accepts.
Other NP-complete problems

3-SAT : satisfiability for conjunctive normal form formulas with exactly 3 literals per clause.

SAT \propto 3-SAT.

1. A clause $(x_1 \lor x_2)$ with two literals is replaced by

 $$(x_1 \lor x_2 \lor y) \land (x_1 \lor x_2 \lor \neg y)$$

2. A clause (x_1) with a single literal is replaced by

 $$(x_1 \lor y_1 \lor y_2) \land (x_1 \lor y_1 \lor \neg y_2) \land (x_1 \lor \neg y_1 \lor y_2) \land (x_1 \lor \neg y_1 \lor \neg y_2)$$
3. A clause

\[(x_1 \lor x_2 \lor \cdots \lor x_i \lor \cdots \lor x_{\ell-1} \lor x_{\ell})\]

with \(\ell \geq 4\) literals is replaced by

\[(x_1 \lor x_2 \lor y_1) \land (\neg y_1 \lor x_3 \lor y_2) \land (\neg y_2 \lor x_4 \lor y_3) \land \cdots \land (\neg y_{i-2} \lor x_i \lor y_{i-1}) \land \cdots \land (\neg y_{\ell-4} \lor x_{\ell-2} \lor y_{\ell-3}) \land (\neg y_{\ell-3} \lor x_{\ell-1} \lor x_{\ell})\]
The *vertex cover* problem (VC) is NP-complete.

Given a graph $G = (V, E)$ and an integer $j \leq |V|$, the problem is to determine if there exists a subset $V' \subseteq V$ such that $|V'| \leq j$ and such that, for each edge $(u, v) \in E$, either u, or $v \in V'$.
3-SAT \propto VC

Instance of 3-SAT:

$$E_1 \land \cdots \land E_i \land \cdots \land E_k$$

Each E_i is of the form

$$x_{i1} \lor x_{i2} \lor x_{i3}$$

where x_{ij} is a literal. The set of propositional variables is

$$P = \{p_1, \ldots, p_\ell\}.$$

The instance of VC that is built is then the following.
1. The set of vertices V contains

(a) a pair of vertices labeled p_i and $\neg p_i$ for each propositional variable in \mathcal{P},

(b) a 3-tuple of vertices labeled x_{i1}, x_{i2}, x_{i3} for each clause E_i.

The number of vertices is thus equal to $2\ell + 3k$.
2. The set of edges E contains

(a) The edge $(p_i, \neg p_i)$ for each pair of vertices $p_i, \neg p_i$, $1 \leq i \leq \ell$,

(b) The edges (x_{i1}, x_{i2}), (x_{i2}, x_{i3}) et (x_{i3}, x_{i1}) for each 3-tuple of vertices x_{i1}, x_{i2}, x_{i3}, $1 \leq i \leq k$,

(c) an edge between each vertex x_{ij} and the vertex p or $\neg p$ representing the corresponding literal.

The number of edges is thus $\ell + 6k$.

3. The constant j is $\ell + 2k$.
Example

\[(p_2 \lor \neg p_1 \lor p_4) \land (\neg p_3 \lor \neg p_2 \lor \neg p_4)\]
Other examples

The Hamiltonian circuit (HC) and travelling salesman (TS) problems are NP-complete.

The *chromatic number* problem is NP-Complete. Given a graph G and a constant k this problem is to decide whether it is possible to colour the vertices of the graph with k colours in such a way that each pair of adjacent (edge connected) vertices are coloured differently.
The integer programming problem is NP-complete. An instance of this problem consists of

1. a set of \(m \) pairs \((\overline{v}_i, d_i) \) in which each \(\overline{v}_i \) is a vector of integers of size \(n \) and each \(d_i \) is an integer,

2. a vector \(\overline{d} \) of size \(n \),

3. a constant \(b \).

The problem is to determine if there exists an integer vector \(\overline{x} \) of size \(n \) such that \(\overline{x} \cdot \overline{v}_i \leq d_i \) for \(1 \leq i \leq m \) and such that \(\overline{x} \cdot \overline{d} \geq b \).

Over the rationals this problem can be solved in polynomial time (linear programming).
The problem of checking the equivalence of nondeterministic finite automata is NP-hard. Notice that there is no known NP algorithm for solving this problem. It is complete in the class PSPACE.
8.8 Interpreting NP-completeness

- Worst case analysis. Algorithms that are efficient “on average” are possible.

- Heuristic methods to limit the exponential number of cases that need to be examined.

- Approximate solutions for optimisation problems.

- The “usual” instances of problems can satisfy constraints that reduce to polynomial the complexity of the problem that actually has to be solved.
8.9 Other complexity classes

The class co-NP is the class of languages \(L \) whose complement \((\Sigma^* - L) \) is in NP.

The class EXPTIME is the class of languages decided by a deterministic Turing machine whose complexity function is bounded by an exponential function \((2^{p(n)}) \) where \(p(n) \) is a polynomial).
The class PSPACE is the class of languages decided by a deterministic Turing machine whose space complexity (the number of tape cells used) is bounded by a polynomial.

The class NPSPACE is the class of languages accepted by a nondeterministic Turing machine whose space complexity is bounded by a polynomial.

$$P \subseteq \text{NP} \subseteq \text{co-NP} \subseteq \text{PSPACE} \subseteq \text{EXPTIME}.$$