Chapter 6
Recursive functions
6.1 Introduction

- Other formalization of the concept of effective procedure: computable functions over the natural numbers.

- Computable functions?
 - Basic functions.
 - Function composition.
 - Recursion mechanism.
6.2 Primitive recursive functions

Functions in the set \(\{ N^k \rightarrow N \mid k \geq 0 \} \).

1. Basic primitive recursive functions.

1. \(0() \)

2. \(\pi_i^k(n_1, \ldots, n_k) \)

3. \(\sigma(n) \)
2. Function composition.

- Let g be a function with ℓ arguments,

- h_1, \ldots, h_ℓ functions with k arguments.

- $f(\overline{n}) = g(h_1(\overline{n}), \ldots, h_\ell(\overline{n}))$ is the composition of g and of the functions h_i.
3. Primitive recursion.

• Let g be a function with k arguments and h a function with $k+2$ arguments.

•

\[
\begin{align*}
 f(\overline{n}, 0) &= g(\overline{n}) \\
 f(\overline{n}, m+1) &= h(\overline{n}, m, f(\overline{n}, m))
\end{align*}
\]

is the function defined from g and h by primitive recursion.

• Remark: f is computable if g and h are computable.
Definition
The *Primitive recursive functions* are:

- the basic primitive recursive functions;

- all functions that can be obtained from the basic primitive recursive functions by using composition and primitive recursion any number of times.
Examples

Constant functions:

\[j() = \sigma(\sigma(\ldots \sigma(0()))) \]

Addition function:

\[
\begin{align*}
\text{plus}(n_1, 0) &= \pi^1_1(n_1) \\
\text{plus}(n_1, n_2 + 1) &= \sigma(\pi^3_3(n_1, n_2, \text{plus}(n_1, n_2)))
\end{align*}
\]

Simplified notation:

\[
\begin{align*}
\text{plus}(n_1, 0) &= n_1 \\
\text{plus}(n_1, n_2 + 1) &= \sigma(\text{plus}(n_1, n_2))
\end{align*}
\]
Evaluation of $\text{plus}(4, 7)$:

\[
\begin{align*}
\text{plus}(7, 4) &= \text{plus}(7, 3 + 1) \\
&= \sigma(\text{plus}(7, 3)) \\
&= \sigma(\sigma(\text{plus}(7, 2))) \\
&= \sigma(\sigma(\sigma(\text{plus}(7, 1)))) \\
&= \sigma(\sigma(\sigma(\sigma(\text{plus}(7, 0))))) \\
&= \sigma(\sigma(\sigma(\sigma(7)))) \\
&= 11
\end{align*}
\]

Product function:

\[
\begin{align*}
n \times 0 &= 0 \\
n \times (m + 1) &= n + (n \times m)
\end{align*}
\]
Power function:

\[
\begin{align*}
n^0 &= 1 \\
n^{m+1} &= n \times n^m
\end{align*}
\]

Double power:

\[
\begin{align*}
n \uparrow\uparrow 0 &= 1 \\
n \uparrow\uparrow m + 1 &= n \uparrow\uparrow m
\end{align*}
\]

\[
n \uparrow\uparrow m = n^{n^{n^{\ddots^n}}}_{m}
\]
Triple power:
\[
\begin{align*}
n \uparrow \uparrow \uparrow 0 &= 1 \\
n \uparrow \uparrow \uparrow m + 1 &= n \uparrow \uparrow (n \uparrow \uparrow \uparrow m)
\end{align*}
\]

\(k\)-power:
\[
\begin{align*}
n \uparrow^k 0 &= 1 \\
n \uparrow^k m + 1 &= n \uparrow^{k-1} (n \uparrow^k m).
\end{align*}
\]

If \(k\) is an argument:
\[
f(k + 1, n, m + 1) = f(k, n, f(k + 1, n, m)).
\]

Ackermann's function:
\[
\begin{align*}
Ack(0, m) &= m + 1 \\
Ack(k + 1, 0) &= Ack(k, 1) \\
Ack(k + 1, m + 1) &= Ack(k, Ack(k + 1, m))
\end{align*}
\]
Factorial function:

\[
0! = 1 \\
(n + 1)! = (n + 1).n!
\]

Predecessor function:

\[
pred(0) = 0 \\
pred(m + 1) = m
\]

Difference function:

\[
n \cdot 0 = n \\
n \cdot (m + 1) = pred(n \cdot m)
\]
Sign function:

\[
\begin{align*}
\text{sg}(0) &= 0 \\
\text{sg}(m + 1) &= 1
\end{align*}
\]

Bounded product:

\[
f(\overline{n}, m) = \prod_{i=0}^{m} g(\overline{n}, i)
\]

\[
\begin{align*}
f(\overline{n}, 0) &= g(\overline{n}, 0) \\
f(\overline{n}, m + 1) &= f(\overline{n}, m) \times g(\overline{n}, m + 1)
\end{align*}
\]
6.3 Primitive recursive predicates

A predicate P with k arguments is a subset of N^k (the elements of N^k for which P is true).

The characteristic function of a predicate $P \subseteq N^k$ is the function $f : N^k \to \{0, 1\}$ such that

$$f(\bar{n}) = \begin{cases} 0 & \text{si } \bar{n} \notin P \\ 1 & \text{si } \bar{n} \in P \end{cases}$$

A predicate is primitive recursive if its characteristic function is primitive recursive.
Examples

Zero predicate:

\[
\begin{align*}
\text{zerop}(0) &= 1 \\
\text{zerop}(n + 1) &= 0
\end{align*}
\]

< predicate:

\[
\text{less}(n, m) = \text{sg}(m \div n)
\]

Boolean predicates:

\[
\begin{align*}
\text{and}(g_1(n), g_2(n)) &= g_1(n) \times g_2(n) \\
\text{or}(g_1(n), g_2(n)) &= \text{sg}(g_1(n) + g_2(n)) \\
\text{not}(g_1(n)) &= 1 \div g_1(n)
\end{align*}
\]

= predicate:

\[
\text{equal}(n, m) = 1 \div (\text{sg}(m \div n) + \text{sg}(n \div m))
\]
Bounded quantification:

\(\forall i \leq m \ p(\overline{n}, i) \)

is true if \(p(\overline{n}, i) \) is true for all \(i \leq m \).

\(\exists i \leq m \ p(\overline{n}, i) \)

is true if \(p(\overline{n}, i) \) is true for at least one \(i \leq m \).

\(\forall i \leq mp(\overline{n}, i) : \)

\[\prod_{i=0}^{m} p(\overline{n}, i) \]

\(\exists i \leq mp(\overline{n}, i) : \)

\[1 \div \prod_{i=0}^{m} (1 - p(\overline{n}, i)) \].
Definition by case:

\[f(n) = \begin{cases}
 g_1(n) & \text{if } p_1(n) \\
 \vdots \\
 g_\ell(n) & \text{if } p_\ell(n)
\end{cases} \]

\[f(n) = g_1(n) \times p_1(n) + \ldots + g_\ell(n) \times p_\ell(n). \]

Bounded minimization:

\[\mu_i \leq m \ q(n,i) = \begin{cases}
 \text{the smallest } i \leq m \text{ such that } q(n,i) = 1, \\
 0 & \text{if there is no such } i
\end{cases} \]

\[\begin{align*}
 &\mu_i \leq 0 \ q(n,i) = 0 \\
 &\mu_i \leq m + 1 \ q(n,i) = \\
 &\begin{cases}
 0 & \text{if } \neg \exists i \leq m + 1 \ q(n,i) \\
 \mu_i \leq m \ q(n,i) & \text{if } \exists i \leq m \ q(n,i) \\
 m + 1 & \text{if } q(n,m + 1) \\
 \text{and } \neg \exists i \leq m \ q(n,i)
 \end{cases}
\end{align*} \]
6.4 Beyond primitive recursive functions

Theorem
There exist computable functions that are not primitive recursive.

<table>
<thead>
<tr>
<th>(A)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>(\ldots)</th>
<th>(j)</th>
<th>(\ldots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_0)</td>
<td>(f_0(0))</td>
<td>(f_0(1))</td>
<td>(f_0(2))</td>
<td>(\ldots)</td>
<td>(f_0(j))</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(f_1)</td>
<td>(f_1(0))</td>
<td>(f_1(1))</td>
<td>(f_1(2))</td>
<td>(\ldots)</td>
<td>(f_1(j))</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(f_2)</td>
<td>(f_2(0))</td>
<td>(f_2(1))</td>
<td>(f_2(2))</td>
<td>(\ldots)</td>
<td>(f_2(j))</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\ldots)</td>
<td>(\vdots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(f_i)</td>
<td>(f_i(0))</td>
<td>(f_i(1))</td>
<td>(f_i(2))</td>
<td>(\ldots)</td>
<td>(f_i(j))</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\ldots)</td>
<td>(\vdots)</td>
<td>(\ldots)</td>
</tr>
</tbody>
</table>

\[g(n) = f_n(n) + 1 = A[n, n] + 1. \]

is not primitive recursive, but is computable.
6.4 The μ-recursive functions

Unbounded minimization:

$$\mu i \ q(n, i) = \begin{cases}
\text{the smallest } i \text{ such that } q(n, i) = 1 \\
0 \text{ if such an } i \text{ does not exist}
\end{cases}$$

A predicate $q(n, i)$ is said to be safe if

$$\forall n \ \exists i \ q(n, i) = 1.$$

The μ-recursive functions and predicates are those obtained from the basic primitive recursive functions by:

- composition, primitive recursion, and

- unbounded minimization of safe predicates (safe unbounded minimization).
\(\mu \)-recursive functions and computable functions

Numbers and character strings:

Lemma
There exists an effective representation of numbers by character strings.

Lemma
There exists an effective representation of character strings by natural numbers.

Alphabet \(\Sigma \) of size \(k \). Each symbol of \(\Sigma \) is represented by an integer between 0 and \(k - 1 \). The representation of a string \(w = w_0 \ldots w_l \) is thus:

\[
gd(w) = \sum_{i=0}^{l} k^{l-i} gd(w_i)
\]
Example: $\Sigma = \{a, b, c, d, e, f, g, h, i, j\}$.

\[
\begin{align*}
gd(a) &= 0 \\
gd(b) &= 1 \\
&\quad \vdots \\
gd(i) &= 8 \\
gd(j) &= 9
\end{align*}
\]

$gd(aabaaafgj) = 00100569$.

This encoding is ambiguous:

$gd(aaabaaafgj) = 000100569 = 00100569 = gd(aabaaafgj)$

Solution: use an alphabet of size $k + 1$ and do not encode any symbol by 0.

\[
gd(w) = \sum_{i=0}^{l} (k + 1)^{l-i} gd(w_i).
\]
From μ-recursive functions
To Turing machines

Theorem
Every μ-recursive function is computable by a Turing machine.

1. The basic primitive recursive functions are Turing machine computable;

2. Composition, primitive recursion and safe unbounded minimization applied to Turing computable functions yield Turing computable functions.
From Turing machines to \(\mu\)-recursive functions

Theorem
Every Turing computable functions is \(\mu\)-recursive.

Let \(M\) be a Turing machine. One proves that there exists a \(\mu\)-recursive function \(f_M\) such that

\[
f_M(w) = gd^{-1}(f(gd(w))).
\]

Useful predicates:

1. \(\text{init}(x)\) initial configuration of \(M\).

2. \(\text{next_config}(x)\)
3.

\[
\text{config}(x,n) \begin{cases}
\text{config}(x,0) = x \\
\text{config}(x,n+1) = \\
\text{next}_\text{config}(\text{config}(x,n))
\end{cases}
\]

4. \(\text{stop}(x) = \begin{cases}
1 & \text{if } x \text{ final} \\
0 & \text{if not}
\end{cases} \)

5. \(\text{output}(x) \)

We then have:

\[f(x) = \text{output}(\text{config}(\text{init}(x), \text{nb}_\text{of}_\text{steps}(x))) \]

where

\[\text{nb}_\text{of}_\text{steps}(x) = \mu i \text{ stop}(\text{config}(\text{init}(x), i)). \]
Partial functions

A partial function \(f : \Sigma^* \rightarrow \Sigma^* \) is computed by a Turing machine \(M \) if,

- for every input word \(w \) for which \(f \) is defined, \(M \) stops in a configuration in which \(f(w) \) is on the tape,

- for every input word \(w \) for which \(f \) is not defined, \(M \) does not stop or stops indicating that the function is not defined by writing a special value on the tape.
A partial function $f : \mathbb{N} \rightarrow \mathbb{N}$ is μ-recursive if it can be defined from basic primitive recursive functions by

- composition,
- primitive recursion,
- unbounded minimization.

Unbounded minimization can be applied to unsafe predicates. The function $\mu i \ p(\bar{n}, i)$ is undefined when there is no i such that $p(\bar{n}, i) = 1$.

Theorem
A partial function is μ-recursive if and only if it is Turing computable.