
Chapter 2
Finite Automata

28

2.1 Introduction

• Finite automata: a first model of the notion of effective procedure.

(They also have many other applications).

• The concept of finite automaton can be derived by examining what

happens when a program is executed on a computer: state, initial

state, transition function.

• The finite state hypothesis and its consequences: finite or cyclic

sequences of states.

• The problem of representing the data: only a finite number of

different data sets can be represented since there exists only a finite

number of initial states.

29

Representing data.

• Problem: to recognize a language.

• Data: a word.

• We will assume that the word is fed to the machine character by

character, one character being handled at each cycle and the machine

stopping once the last character has been read.

30

2.2 Description

• Input tape.

• Set of states:

– initial state,

– accepting states.

• Execution step:

tape :

head :

b a a a b
�
�
�

A
A
A

31

2.3 Formalization

A deterministic finite automaton is defined by a five-tuple

M = (Q,Σ, δ, s, F), where

• Q is a finite set of states,

• Σ is a finite alphabet,

• δ : Q×Σ→ Q is the transition function,

• s ∈ Q is the initial state,

• F ⊆ Q is the set of accepting states.

32

Defining the language accepted by a finite automaton

• Configuration : (q, w) ∈ Q×Σ∗.

• Configuration derivable in one step: (q, w) `M (q′, w′).

• Derivable configuration (multiple steps) : (q, w) `∗M (q′, w′).

• Execution:

(s, w) ` (q1, w1) ` (q2, w2) ` · · · ` (qn, ε)

• Accepted word:

(s, w) `∗M (q, ε)

and q ∈ F .

• Accepted language L(M) :

{w ∈ Σ∗ | (s, w) `∗M (q, ε) avec q ∈ F}.

33

2.4 Examples

Words ending with b :

δ : q σ δ(q, σ) Q = {q0, q1}
q0 a q0 Σ = {a, b}
q0 b q1 s = q0
q1 a q0 F = {q1}
q1 b q1

q0&%
'$
>

a

q1&%
'$
"!

b

q

b

i

a

34

q0��
��
��
��

>

b

q1��
��
��
��

q2��
��
a

M

b

q

a

i

b

-a

{w | w does not contain 2 consecutive a’s}.

35

2.5 Nondeterministic finite automata

Automata that can choose among several transitions.

Motivation :

• To examine the consequences of generalizing a given definition.

• To make describing languages by finite automata easier.

• The concept of non determinism is generally useful.

36

Description

Nondeterministic finite automata are finite automata that allow:

• several transitions for the same letter in each state,

• transitions on the empty word (i.e., transitions for which nothing is

read),

• transitions on words of length greater than 1 (combining transitions).

Nondeterministic finite automata accept if a least one execution accepts.

37

Formalization

A nondeterministic finite automaton is a five-tuple M = (Q,Σ,∆, s, F),

where

• Q is a finite set of states,

• Σ is an alphabet,

• ∆ ⊂ (Q×Σ∗ ×Q) is the transition relation,

• s ∈ Q is the initial state,

• F ⊆ Q is the set of accepting states.

38

Defining the accepted language

A configuration (q′, w′) is derivable in one step from the configuration

(q, w) by the machine M ((q, w) `M (q′, w′)) if

• w = uw′ (word w begins with a prefix u ∈ Σ∗),

• (q, u, q′) ∈∆ (the three-tuple (q, u, q′) is in the transition relation ∆).

A word is accepted if there exists an execution (sequence of derivable

configurations) that leads to an accepting state.

39

Examples

q0��
��

>

a

q1��
��

q2��
��
aa

+

ε

-ab -b

?

b

?

a

q3��
��

-

bbb
q4��
��
��
��
�

a

)

b

L(M) = ((a ∪ ab)∗bbbbΣ∗) ∪ ((a ∪ ab)∗abb(aa)∗aΣ∗)

40

q0��
��

>

a

M

b

q1��
��
a

q2��
��
��
��
ab

-a -b

L(M) = Σ∗ab(ab)∗

Words ending with at least one repetition of ab.

41

2.6 Eliminating non determinism

Definition

Two automata M1 and M2 are equivalent if they accept the same

language, i.e. if L(M1) = L(M2).

Theorem

Given any nondeterministic finite automaton, it is possible to build an

equivalent deterministic finite automaton.

42

2.6 Idea of the construction

1. Eliminate transitions of length greater than 1.

2. Eliminate compatible transitions

Transitions of length greater than 1

��
��

��
��

-aba

⇓

��
��

��
��

��
��

��
��

-a -b -a

43

Compatible transitions

q0&%
'$

>

a

��
��

��
��

��
��1a

PPPPPPPPPPPPqb

q1&%
'$

q2&%
'$
&%
'$

⇒ {q0}&%
'$

> ��
��

��
��
��

��1a

PPPPPPPPPPPPqb

{q0, q1}

{q2}&%
'$
&%
'$

44

Formalization

Non deterministic automaton M = (Q,Σ,∆, s, F). Build an equivalent non

deterministic automaton M ′ = (Q′,Σ,∆′, s, F) such that

∀(q, u, q′) ∈∆′, |u| ≤ 1.

• Initially Q′ = Q and ∆′ = ∆.

• For each transition (q, u, q′) ∈∆ with u = σ1σ2 . . . σk, (k > 1) :

– remove this transition from ∆′,

– add new states p1, . . . , pk−1 to Q′,

– add new transitions (q, σ1, p1), (p1, σ2, p2), . . . , (pk−1, σk, q
′) to ∆′

45

Formalization

Non deterministic automaton M = (Q,Σ,∆, s, F) such that

∀(q, u, q′) ∈∆′, |u| ≤ 1. Build an equivalent deterministic automaton

M ′ = (Q′,Σ, δ′, s′, F ′).

E(q) = {p ∈ Q | (q, w) `∗M (p, w)}.

• Q′ = 2Q.

• s′ = E(s).

• δ′(q, a) =
⋃
{E(p) | ∃q ∈ q : (q, a, p) ∈∆}.

• F ′ = {q ∈ Q′ | q ∩ F 6= ∅}.

46

Example

q0&%
'$

> ��
��

��
��

��
��

��
��

��1

ε

PPPPPPPPPPPPPPPPPPq
ε

q1&%
'$

q3&%
'$

a

�

a

]

a

^

-

�

a

ε

q2&%
'$

q4&%
'$
"!
HH

H
HH

H
HH

H
HH

H
HH

H
HH

HHY

a 6

a

b

�

b
^

b

]

47

{q0, q1, q3}> ��
��

��
��

��
��

��
��

��1

PPPPPPPPPPPPPPPPPPPq

a

b

{q1, q2, q3}

a

{q3, q4}

6

a

b

M

{q1, q3, q4}
-

b

�

a
�

���
����

���
���

���
����

b

48

Alternative construction:

Only accessible states

1. Initially Q′ contains the initial state s′.

2. The following operations are then repeated until the set of states Q′ is

no longer modified.

(a) Choose a state q ∈ Q′ to which the operation has not yet been

applied.

(b) For each letter a ∈ Σ compute the state p such that p = δ′(q, a).

The state p is added to Q′.

49

2.7 Finite automata and regular expressions

Theorem

A language is regular if and only if it is accepted by a finite automaton.

We will prove:

1. If a language can be represented by a regular expression, it is accepted

by a non deterministic finite automaton.

2. If a language is accepted by a non deterministic finite automaton, it is

regular.

50

From expressions to automata

• ∅

��
��

>

• ε

��
��
��
��

>

• σ ∈ Σ

��
��

> -σ
��
��
��
��

51

α1 : A1 = (Q1,Σ,∆1, s1, F1)

α2 : A2 = (Q2,Σ,∆2, s2, F2)

��
��

>

��
��
��
��
��
��
��
��
��
��
��
��

A1

��
��

>

��
��
��
��
��
��
��
��

A2

52

• α1 · α2

��
��

>

��
��
��
��
��
��

A1

��
��

��
��
��
��
��
��
��
��

A2

��
��

��
��

��
��

��
�1
-

PPPPPPPPPPPPPPPq

ε

ε

ε

Formally, A = (Q,Σ,∆, s, F) where

• Q = Q1 ∪Q2,

• ∆ = ∆1 ∪∆2 ∪ {(q, ε, s2) | q ∈ F1},
• s = s1,

• F = F2.

53

• α = α∗1

��
��
��
��

> -ε
��
��

��
��
��
��
��
��
��
��
��
��
��
��

A1

Z
Z
Z

Z
ZZ}

�

�
�
�

�
��=

ε

ε

ε

54

• α = α1 ∪ α2

A2

��
��

��
��
����
��
��
����

A1

��
��

��
��
����
��
��
����
��
��
����

��
��
> �

��
�
��

�
��

�
��*

HH
HHH

HHH
HHHHj

ε

ε

55

From automata to regular languages

Intuitive idea:

• Build a regular expression for each path from the initial state to an

accepting state.

• Use the ∗ operator to handle loops.

Definition

Let M be an automaton and Q = {q1, q2, . . . , qn} its set of states. We will

denote by R(i, j, k) the set of words that can lead from the state qi to the

state qj, going only through states in {q1, . . . , qk−1}.

56

R(i, j,1) =

{
{w | (qi, w, qj) ∈∆} si i 6= j
{ε} ∪ {w | (qi, w, qj) ∈∆} si i = j

R(i, j, k + 1) = R(i, j, k) ∪
R(i, k, k)R(k, k, k)∗R(k, j, k)

qk��
��

qi��
��

qj��
��

�
�
�
�
�
�
�
�>

-

Z
Z
Z
Z
Z
Z
ZZ~

L(M) =
⋃
qj∈F

R(1, j, n+ 1).

57

Example

q1��
��

>

a

q2��
��
��
��
b

q

b

i

a

k = 1 k = 2
R(1,1, k) ε ∪ a (ε ∪ a) ∪ (ε ∪ a)(ε ∪ a)∗(ε ∪ a)
R(1,2, k) b b ∪ (ε ∪ a)(ε ∪ a)∗b
R(2,1, k) a a ∪ a(ε ∪ a)∗(ε ∪ a)
R(2,2, k) ε ∪ b (ε ∪ b) ∪ a(ε ∪ a)∗b

The language accepted by the automaton is R(1,2,3), which is

[b ∪ (ε ∪ a)(ε ∪ a)∗b] ∪ [b ∪ (ε ∪ a)(ε ∪ a)∗b]
[(ε ∪ b) ∪ a(ε ∪ a)∗b]∗

[(ε ∪ b) ∪ a(ε ∪ a)∗b]

58

