
Parallel Processing in Mixed Integer
Programming

Laurent Poirrier

Université de Liège
Montefiore Institute

March 27, 2009

Outline

Parallel Processing Basics
What, why, how?
Types of Parallel Computing Resources
Domains of Application

Parallel Processing in MIP

What is Parallel Processing?

What is Parallel Processing?

I Any non-sequential processing permits
simultaneous/concurrent computations

I Covers a broad class of very different techniques

Why Parallel?

I Frequency-scaling limits vs. Moore’s law

I Computing power is becoming more affordable

How?

I having multiple problems to solve

I non-sequential algorighms (or parts)

I parallel processing techniques

Parallel Computing Resources

Lower level 1- SIMD and Vector Instructions
2- Many Cores and Specialized Parallel Processing Units
3- Multiple Cores/CPUs: Multithreading

Higher level 4- Distributed computing: grids and clusters

I low level: more hardware-specific, small operations

I high level: more problem-specific, large groups of operations

For MIP?

Which is most suited for Mathematical Programming?

1- SIMD and Vector Instructions

I Specialized CPU instruction that operate on vectors of
numbers.

I No branching possible. Only deterministic vector processing.

1- SIMD and Vector Instructions : Examples

From ffmpeg, SSE code for parts of the FFT (299 lines)

/* do the pass 0 butterfly */
movaps (%0,%1), %%xmm0
movaps %%xmm0, %%xmm1
shufps $0x4E, %%xmm0, %%xmm0
xorps %%xmm4, %%xmm1
addps %%xmm1, %%xmm0

From mplayer-1.0rc2, SSE2 code for IDCT (839 lines)

psrldq i2r(6, xmm0); /* xmm0 = – – – 66 65 – – – */
pslldq i2r(4, xmm5); /* xmm5 = – – – – 54 51 – – */
por r2r(xmm1, xmm4); /* xmm4 = 76 73 67 64 – – 35 33 */
por r2r(xmm2, xmm3); /* xmm3 = 77 75 74 – – 53 52 34 */

2- Specialized Parallel Processing Units

const vec3 a1 = vec3(1., 0., 0.);
const vec3 a2 = vec3(0., 1., 0.);
const float thresh = 0.98;
vec3 nn = normalize(gl Normal);
vec3 aa1;
if (dot(a1, nn) >= thresh) {

aa1 = a2;
} else {

aa1 = a1;
}
vec3 s = normalize(cross(aa1, nn));
vec3 t = normalize(cross(s, nn));

GPGPU: General Purpose Graphics Processing Unit

3- Multithreading

- takes advantage of multi-core architectures
- memory is shared

Limitations:
- thread creation overhead
- number of cores

Typically:
threads: O(8); operations: > 1ms.

4- Distributed Computing

- supercomputers and Beowulfs
- memory is not shared

Limitations:
- process creation overhead
- number of computers
- data transfers

Typically:
threads: O(100); operations: > 1s.

4- Distributed Computing: Networking concepts

I propagation delay: independent from the amount of data,
related to network devices and topology

I transmission delay: proportional to the amount of data,
related to link capacity (max flow)

Scheduling

Clusters are asymetric. What is our objective?

I max/min CPU usage?

I max efficiency in CPU usage?

I fastest solution?

How do we handle failures? And variable resources? Do we have
preemption?

Parallel speedup

Let p be the number of processing units,

Sp =
T1

Tp

Can we achieve linear speedup Sp = p?

Specialized techniques

When a given algorithm is intrinsically sequential, what can be
done?

Specialized techniques: Racing

Specialized techniques: Lookahead

Example in nonlinear programming:

Increment k = {1, 2, . . .} until e(k) ≤ e0 = 2.4.10−4

k = 1 2 3 4 5 . . .
e(k) = 4.4.104 1.2.10−1 2.1.10−4 5.2.10−7 2.3.10−8 . . .

↓
exit

In Mixed Integer Programming

I Linear Programming

I Branch and Bound

- Heuristic cut generation
- Choice of branching direction
- Tree backtracking

Linear Programming

Both the simplex algorithm and interior-point methods are
iterative. Iterations consists in relatively fast matrix operations.
In MIP, solution of LP relaxations is considered fast. But the
number of subproblems to solve can be huge.

Branch and Bound: Strong Branching

For every element in the subset of potentially ”good” branching
directions, a subproblem is created, and a few simplex iterations
are performed.

The present, the future

Cplex, gurobi, mosek, coin-or can be multithreaded (mostly using
parallel strong branching and racing), but not distributed.

Distributed computing could be explored for backtracking in short
term.

Open problem: Scheduling in the case context branch and bound
(both for multithread and distributed)

Nonlinear optimization

Given f(p), find p such that

y ≈ f(p) (1)

We look for a local minimum of

e(p) =
M−1∑
i=0

(fi (p)− yi)
2 (2)

whose basin of attraction contains the initial condition

p = p0

Levenberg-Marquardt

qi =
(
JT J + λ diag(JT J)

)−1
JT (y − f(pi)) (3)

pi+1 = pi + qi (4)

Levenberg-Marquardt Iteration Scheme (1)

e0 = ∞
λ0 = 0.001
ν = 10
i = 0

while (not stop condition) {
(a): Computation of Jacobian

Computation of terms of q

(b): e1 = residue(pi + q(λi))
e2 = residue(pi + q(λi/ν))

if (e1 < e0) and (e1 < e2) {
pi+1 = pi + q(λi)
λi+1 = λi

Levenberg-Marquardt Iteration Scheme (2)
} else if (e2 < e0) and (e2 < e1) {

pi+1 = pi + q(λi/ν)
λi+1 = λi/ν

} else if (e1 > e0) and (e2 > e0) {
e3 = ∞
k = 0
while (e3 ≥ e0) {

(c): e3 = residue(pi + q(λi .ν
k))

k = k + 1

if (k ≥ bound on k)
exit

}
pi+1 = pi + q(λi .ν

k)
λi+1 = λi .ν

k

}
i = i + 1

}

	Parallel Processing Basics
	What, why, how?
	Types of Parallel Computing Resources
	Domains of Application

	Parallel Processing in MIP

