A computational survey of best-case gap closure for various relaxations

Introduction

The process of generating valid inequalities for a mixed integer problem

 $P = \min\{c^T x : Ax = b, x \ge 0, x_j \in \mathbb{Z} \ \forall j \in J\}$

generally involves first considering a relaxation of the problem by dropping some of the constraints (integrality, non-negativity, or general linear constraints). Then, cuts can be computed for the relaxed problem. Therefore, by examining how tight the relaxed problem is, we get what is attainable in the best case with cuts based on that relaxation.

In practice, we measured the gap closed by five relaxations in the following way:

$$\% gc = 100 \frac{z_{\text{relaxation}}^* - z_{\text{LP}}^*}{z_{\text{P}}^* - z_{\text{LP}}^*}$$

on most problems of the in the miplib3 [5] and miplib2003 [1].

The extent of this information has three important limitations:

- we do not know the gap actually closed by the cuts: cutting-plane algorithms may or may not converge to the underlying relaxation.
- all the relaxations we consider are based on the status of the variables at the LP optimum. Therefore, our measurements only regard independent inequalities added at the root node of the MIP.
- due to the use of the objective function as an indicator, when the relaxation deals only with part of the rows of the problem, we still need to consider the others. This in order to keep the basis matrix full-rank in the original problem, and have defined values for all our variables. An alternative would be to compute all the facets of the relaxation that are binding at its optimal value, and add them to the MIP. But that would not be conceivable for largescale problems.

However, this provides us with upper-bounds on the gap closure obtained using cuts derived from each relaxation. We thus have a partial indication of the usefulness of each type of cut for each problem we study.

In this approach, we mainly extend the work of Fischetti and Monaci [11] on the group and corner relaxations, and part of our experiments overlaps with theirs (specifically, on the *group* relaxation), with similar outcomes.

Relaxations

The group relaxation [15][13][14][16], consists in dropping non-negativity constraints on all basic variables, i.e. given B and N the index set of respectively basic and nonbasic variables in the optimal solution of $P_{\rm LP}$,

$$P_{\text{group}} = \min\{c^T x : Ax = b, \ x_j \ge 0 \ \forall j \in N, \ x_j \in \mathbb{Z} \ \forall j \in J\}$$

The mixed integer set P_I , presented in [6] and [8], is related to the one suggested in [3] for deriving inequalities from two rows of the simplex tableau

$$P_I = \min\{c^T x : Ax = b, \ x_j \ge 0 \ \forall j \in N \cup \overline{J}, \ x_j \in \mathbb{Z} \ \forall j \in J \cap B\}$$

The set " P_I +lifting" adds back to P_I the integrality constraints on the non-basic variables [9][7].

The relaxation "x-bounded P_I " adds lower and upper bounds (when available in the original problem) on the basic variables of P_I [10][4][12], while "s-bounded P_I " considers bounds on the non-basic variables [2].

Q. Louveaux, L. Poirrier –

Results

In summary, we have:

	ba	sic	non	additional		
	integer	continuous	integer	continuous	constraints	
LP	continuous		continuous			
group	unbounded	unbounded				
P_I	unbounded		continuous			
$P_I + \text{lifting}$	unbounded					
x-bounded P_I			continuous		$0 \le x_B \le u$	
s-bounded P_I	unbounded		continuous		$0 \le x_N \le u$	

miplib 3				miplib 2003							
problem	group %gc	P_I	$P_I + \text{Inting}$	X-D. P_I	S-D. P_I	problem	group %gc	P_I	$P_I + \text{inting}$	X-D. P_I	S-D. P_I
10teams	42.86	$\frac{1000}{0}$	14.29	$\frac{1000}{0}$	$\frac{1000}{0}$	10teams	42.86	$\frac{1000}{0}$	14.29	$\frac{1000}{0}$	$\frac{1}{0}$
air03	90.28	100	100	100	100	alc1s1	24.42				
air04	1.09	10.9	10.9	100	10.9	aflow30a	14.2	92.4	100	92.4	92.4
air05	3.7	19.82	19.82	100	19.82	aflow40b	14.99	95.54	100		
arki001	99.45	24.78	100	38.72	46.49	air04	1.09	10.9	10.9	100	10.9
bell3a	83.79	100	100	100	100	air05	3.7	19.82	19.82	100	19.82
bell5	4.4	96.11	100	96.26	96.11	arki001	99.45	24.78	100	38.72	46.49
blend2	37.98	80.9 56.01	80.9	80.9 56.01	80.9 56.01	atlanta-ip	76 09	56 01	100	56 01	56 01
dano3min	10.92	50.01	100	50.01	50.01	dano3min	10.92	50.01	100	50.01	50.01
danoint	1.74	99.89		99.89	99.89	danoint	1.74	99.89		99.89	99.89
dcmulti		100	100	100	99.99	disctom					
dsbmip						ds				8.73	
egout	100	100	100	100	100	fast0507	46.08		46.08		
enigma						fiber	72.25	7.26	93.81	11.43	7.35
fast0507	46.08		46.08			fixnet6	78.87	100	100	100	100
fiber	72.25	7.26	93.81	11.43	7.35	gesa2	32.29	69.2	100	69.21	69.21
fixnet6	78.87	$100 \\ 100$	100	$100 \\ 100$	$100 \\ 100$	gesa2-o	32.32	69.35	99.98	69.72	69.35
flugpl	97.38	100	100	100	100	glass4	0	0	77 10	0	0
gen	20.2	100 60 91	100	100 60 99	100 60 22	narp2		32.28	(1.18	37.3	31.51
gesa2	-0⊿.0 32-33	69.21	100	69.22	69.22 69.36	nu manna81	100	100	100	100	100
gesa2_0	49.31	98.76	100	99.12	99.12	markshare1	100	0	100	0	100
gesa3_o	49.2	97.17	100	98.76	97.17	markshare2		0		0	0
gt2	46.79	57.12	57.12	100	57.12	mas74		17.31		20.69	17.31
harp2		32.28	77.18	37.3	32.28	mas76		14.14	72.64	14.4	14.14
khb05250	62.07	100	100	100	100	${ m misc}07$	0.72	0.72	27.6	6.93	0.72
l152lav	0.98	16.1	22.3	70.29	18.6	mkc		21.52		81.83	35.68
lseu		10.42	83.88	19.03	10.42	mod011	3.5	100	100	100	100
markshare1		0		0	0	modglob	31.28	48.56	100	48.57	48.57
markshare2		0		0	0	momentum1					
$\max 74$		17.31 17.17	79.64	20.69	17.31 14.14	momentum2					
$\max_{i \in O} \frac{1}{2}$	7.94	14.14 10.43	12.04	14.4 43.71	$\begin{array}{c} 14.14 \\ 23.16 \end{array}$	momentums					
misc06	7.24 2.19	19.45 99.84	100	43.71 100	25.10 100	mzzy11	3 85			100	
misc07	0.72	0.72	27.6	6.93	0.72	mzzv42z	3.05			100	
mitre	0	78.29		80.04	78.29	net12	0.00			200	
mkc		21.52		81.83	35.68	noswot	0	0	100	0	0
mod008	50.22	4.65	93.78	5.18	4.65	nsrand-ipx		0		0	0
mod010	49.75	37.19	37.19	100	37.19	nw04	51.03	3.99	41.6	4.9	4.11
mod011	3.5	100	100	100	100	opt1217	50.27	0.53	50.27	0.53	0.53
$\operatorname{modglob}$	31.28	48.56	100	48.57	48.57	p2756	0.29	2.34	40.95	2.34	2.34
noswot	0	0	100	0	0	pk1	0	0	81.82	7.27	0
nw04	51.03	3.99	41.6	4.9	4.11	pp08a		89.38	100	89.38	89.38
p0033		0.01 56.76		24.2 56 76	0.01	pp08aCUIS	974	100	100	100	100
p0201 p0282	8.0	30.70 46.02	64.85	90.70 90.85	30.70 46.02	protioid	0.74	100	100	100	100
p0202 p0548	0.02	40.02 85.74	93.54	88	$\frac{40.02}{85.74}$	rd-rpluse-21	0	100	100	100	100
p2756	0.02 0.29	2.34	40.95	2.34	2.34	roll3000	0	0		0	0
pk1	0	0	81.82	7.27	0	rout		17.27	21.66	34.23	18.76
pp08a		89.38	100	89.38	89.38	set1ch		100	100	100	100
pp08aCUTS		100	100	100	100	seymour	6.02				
qiu	0	100	100	100	100	sp97ar					
qnet1	6.4	72.17	95.63	79.62	72.17	stp3d	0.45				
$qnet1_o$	6	54.48		77.1	59.22	swath	33.01	3.5		3.69	3.5
rentacar	0	100	100	100	100	t1717		00.10		00.10	00.10
rgn	0	0	100	0	0	timtab1		90.19		90.19	90.19
rout		17.27		34.23	18.76	timtab2		100	100	100	100
setich	6 02	100		100	100	tr12-30		100	100	100	100
stein97	0.02 N	100	100	100	100	vpmz		100	100	100	100
stein45	0	100	100	100	100						
swath	33.01	3.5	100	3.69	3.5						
vpm1		100		100	100						
vpm2		100		100	100						

On the 47 problems for which we could solve to optimality both the group and P_I relaxations, we have the following statistics:

	group	P_I	
Average (%gc)	31.69	56.58	
Standard deviation (%gc)	34.29	42.35	
And they are distributed ((in func	ction of	the

gap closure) as illustrated on the right

Group 🗖 P I 20-40 40-60 60-80 80-100 Cap Closure (%)

{q.louveaux, lpoirrier}@ulg.ac.be – Montefiore Institute, University of Liège

Conclusions

As explained before, the average gap closures presented here must be taken with caution: they are not necessarily directly linked to efficiency in the corresponding cuts. However, an interesting fact might be the apparent non-correlation, given one problem, in the gap closed by the group and P_I relaxations (see graph) below). This can lead us to think that the per-problem usefulness of a given type of cut might be heavily determined by the tightness of the underlying relaxation.

Further developments

Some refinements can be made in the handling of models.

- The additional bounds on variables could be evaluated by optimizing over the LP when they are not present in the initial formulation.
- The slack variables could be made integer in pure-integer constraints. However, this leads to dramatically higher computing times.
- More complete tables will be available with extended memory and CPU time limits (currently 3Gb and 2h).

References

- [1] Tobias Achterberg, Thorsten Koch, and Alexander Martin. MIPLIB 2003. Operations Research Letters, 34(4):361–372, 2006.
- [2] Kent Andersen, Quentin Louveaux, and Robert Weismantel. Mixed-integer sets from two rows of two adjacent simplex bases. Mathematical Programming, 124:455–480, 2010.
- [3] Kent Andersen, Quentin Louveaux, Robert Weismantel, and Laurence A. Wolsey. Inequalities from two rows of a simplex tableau. In IPCO '07: Proceedings of the 12th international conference on Integer Programming and Combinatorial Optimization, pages 1–15, Berlin, Heidelberg, 2007. Springer-Verlag.
- [4] A. Basu, M. Conforti, G. Cornuéjols, and Zambelli G. Minimal inequalities for an infinite relaxation of integer programs. SIAM Journal on Discrete Mathematics 24, pages 158–168, 2010.
- [5] R. E. Bixby, S. Ceria, C. M. McZeal, and M. W. P Savelsbergh. An updated mixed integer programming library: MIPLIB 3.0. Optima, (58):12–15, June 1998.
- [6] Valentin Borozan and Gérard Cornuéjols. Minimal valid inequalities for integer constraints. Math. Oper. Res., 34(3):538–546,
- [7] M. Conforti, G. Cornuéjols, and Zambelli G. A geometric perspective on lifting. 2009. To appear in Operations Research, http://integer.tepper.cmu.edu/
- [8] Gérard Cornuéjols and François Margot. On the facets of mixed integer programs with two integer variables and two constraints. Math. Program., 120(2):429–456, 2009.
- [9] Santanu S. Dey and Laurence A. Wolsey. Lifting integer variables in minimal inequalities corresponding to lattice-free triangles. In IPCO'08: Proceedings of the 13th international conference on Integer programming and combinatorial optimization, pages 463–475, Berlin, Heidelberg, 2008. Springer-Verlag.
- [10] Santanu S. DEY and Laurence A. WOLSEY. Constrained infinite group relaxations of mips. CORE Discussion Papers 2009033, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE), May 2009.
- [11] Matteo Fischetti and Michele Monaci. How tight is the corner relaxation? Discrete Optimization, 5(2):262 269, 2008. In Memory of George B. Dantzig.
- [12] R. Fukasawa and O. Günlük. Strengthening lattice-free cuts using non-negativity. 2009.http://www.optimization-online.org/DB_HTML/2009/05/2296.html.
- [13] R. E. Gomory and E. L. Johnson. Some continuous functions related to corner polyhedra, part I. Mathematical Programming, 3:23-85, 1972.
- [14] R. E. Gomory and E. L. Johnson. Some continuous functions related to corner polyhedra, part II. Mathematical Programming, 3:23-85, 1972.[15] Ralph E. Gomory. Some polyhedra related to combinatorial problems. Linear Algebra and its Applications, 2(4):451-558,
- [16] E. L. Johnson. On the grouop problem for mixed integer programming. *Mathematical Programming Study*, 2:137–179, 1974.