
Conclusions
As explained before, the average gap closures presented here must be taken with
caution: they are not necessarily directly linked to efficiency in the corresponding
cuts. However, an interesting fact might be the apparent non-correlation, given
one problem, in the gap closed by the group and PI relaxations (see graph
below). This can lead us to think that the per-problem usefulness of a given
type of cut might be heavily determined by the tightness of the underlying
relaxation.

Further developments
Some refinements can be made in the handling of models.

• The additional bounds on variables could be evaluated by optimizing over the
LP when they are not present in the initial formulation.

• The slack variables could be made integer in pure-integer constraints. How-
ever, this leads to dramatically higher computing times.

•More complete tables will be available with extended memory and CPU time
limits (currently 3Gb and 2h).
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On the 47 problems for which we could solve
to optimality both the group and PI relax-
ations, we have the following statistics:

group PI
Average (%gc) 31.69 56.58

Standard deviation (%gc) 34.29 42.35

And they are distributed (in function of the
gap closure) as illustrated on the right.

Results
In summary, we have:

basic non basic additional
integer continuous integer continuous constraints

LP continuous continuous
group unbounded unbounded

PI unbounded continuous
PI + lifting unbounded

x-bounded PI continuous 0 ≤ xB ≤ u
s-bounded PI unbounded continuous 0 ≤ xN ≤ u

miplib 3 miplib 2003
problem group PI PI + lifting x-b. PI s-b. PI

%gc %gc %gc %gc %gc
10teams 42.86 0 14.29 0 0

air03 90.28 100 100 100 100
air04 1.09 10.9 10.9 100 10.9
air05 3.7 19.82 19.82 100 19.82

arki001 99.45 24.78 100 38.72 46.49
bell3a 83.79 100 100 100 100
bell5 4.4 96.11 100 96.26 96.11

blend2 37.98 80.9 80.9 80.9 80.9
cap6000 76.92 56.01 100 56.01 56.01

dano3mip
danoint 1.74 99.89 99.89 99.89
dcmulti 100 100 100 99.99
dsbmip

egout 100 100 100 100 100
enigma

fast0507 46.08 46.08
fiber 72.25 7.26 93.81 11.43 7.35

fixnet6 78.87 100 100 100 100
flugpl 97.38 100 100 100 100

gen 100 100 100 100
gesa2 32.3 69.21 100 69.22 69.22

gesa2 o 32.33 69.36 100 69.73 69.36
gesa3 49.31 98.76 100 99.12 99.12

gesa3 o 49.2 97.17 100 98.76 97.17
gt2 46.79 57.12 57.12 100 57.12

harp2 32.28 77.18 37.3 32.28
khb05250 62.07 100 100 100 100

l152lav 0.98 16.1 22.3 70.29 18.6
lseu 10.42 83.88 19.03 10.42

markshare1 0 0 0
markshare2 0 0 0

mas74 17.31 20.69 17.31
mas76 14.14 72.64 14.4 14.14
misc03 7.24 19.43 44.83 43.71 23.16
misc06 2.19 99.84 100 100 100
misc07 0.72 0.72 27.6 6.93 0.72

mitre 78.29 80.04 78.29
mkc 21.52 81.83 35.68

mod008 50.22 4.65 93.78 5.18 4.65
mod010 49.75 37.19 37.19 100 37.19
mod011 3.5 100 100 100 100

modglob 31.28 48.56 100 48.57 48.57
noswot 0 0 100 0 0

nw04 51.03 3.99 41.6 4.9 4.11
p0033 6.61 24.2 6.61
p0201 56.76 56.76 56.76
p0282 8.9 46.02 64.85 90.85 46.02
p0548 0.02 85.74 93.54 88 85.74
p2756 0.29 2.34 40.95 2.34 2.34

pk1 0 0 81.82 7.27 0
pp08a 89.38 100 89.38 89.38

pp08aCUTS 100 100 100 100
qiu 0 100 100 100 100

qnet1 6.4 72.17 95.63 79.62 72.17
qnet1 o 54.48 77.1 59.22

rentacar 0 100 100 100 100
rgn 0 0 100 0 0

rout 17.27 34.23 18.76
set1ch 100 100 100

seymour 6.02
stein27 0 100 100 100 100
stein45 0 100 100 100 100
swath 33.01 3.5 3.69 3.5
vpm1 100 100 100
vpm2 100 100 100

problem group PI PI + lifting x-b. PI s-b. PI

%gc %gc %gc %gc %gc
10teams 42.86 0 14.29 0 0

a1c1s1 24.42
aflow30a 14.2 92.4 100 92.4 92.4
aflow40b 14.99 95.54 100

air04 1.09 10.9 10.9 100 10.9
air05 3.7 19.82 19.82 100 19.82

arki001 99.45 24.78 100 38.72 46.49
atlanta-ip

cap6000 76.92 56.01 100 56.01 56.01
dano3mip

danoint 1.74 99.89 99.89 99.89
disctom

ds 8.73
fast0507 46.08 46.08

fiber 72.25 7.26 93.81 11.43 7.35
fixnet6 78.87 100 100 100 100

gesa2 32.29 69.2 100 69.21 69.21
gesa2-o 32.32 69.35 99.98 69.72 69.35

glass4 0 0 0 0
harp2 32.28 77.18 37.3 31.51

liu
manna81 100 100 100 100 100

markshare1 0 0 0
markshare2 0 0 0

mas74 17.31 20.69 17.31
mas76 14.14 72.64 14.4 14.14
misc07 0.72 0.72 27.6 6.93 0.72

mkc 21.52 81.83 35.68
mod011 3.5 100 100 100 100

modglob 31.28 48.56 100 48.57 48.57
momentum1
momentum2
momentum3

msc98-ip
mzzv11 3.85 100

mzzv42z 3.05 100
net12

noswot 0 0 100 0 0
nsrand-ipx 0 0 0

nw04 51.03 3.99 41.6 4.9 4.11
opt1217 50.27 0.53 50.27 0.53 0.53

p2756 0.29 2.34 40.95 2.34 2.34
pk1 0 0 81.82 7.27 0

pp08a 89.38 100 89.38 89.38
pp08aCUTS 100 100 100 100

protfold 8.74
qiu 0 100 100 100 100

rd-rplusc-21 0 0 0 0
roll3000

rout 17.27 21.66 34.23 18.76
set1ch 100 100 100 100

seymour 6.02
sp97ar
stp3d 0.45
swath 33.01 3.5 3.69 3.5
t1717

timtab1 90.19 90.19 90.19
timtab2
tr12-30 100 100 100 100

vpm2 100 100 100 100

Introduction
The process of generating valid inequalities for a mixed integer problem

P = min{cTx : Ax = b, x ≥ 0, xj ∈ Z ∀j ∈ J}

generally involves first considering a relaxation of the problem by dropping some
of the constraints (integrality, non-negativity, or general linear constraints).
Then, cuts can be computed for the relaxed problem. Therefore, by examin-
ing how tight the relaxed problem is, we get what is attainable in the best case
with cuts based on that relaxation.

In practice, we measured the gap closed by five relaxations in the following way:

%gc = 100
z∗relaxation − z∗LP

z∗P − z∗LP

on most problems of the in the miplib3 [5] and miplib2003 [1].

The extent of this information has three important limitations:

• we do not know the gap actually closed by the cuts: cutting-plane algorithms
may or may not converge to the underlying relaxation.

• all the relaxations we consider are based on the status of the variables at the
LP optimum. Therefore, our measurements only regard independent inequal-
ities added at the root node of the MIP.

• due to the use of the objective function as an indicator, when the relaxation
deals only with part of the rows of the problem, we still need to consider
the others. This in order to keep the basis matrix full-rank in the original
problem, and have defined values for all our variables. An alternative would
be to compute all the facets of the relaxation that are binding at its optimal
value, and add them to the MIP. But that would not be conceivable for large-
scale problems.

However, this provides us with upper-bounds on the gap closure obtained using
cuts derived from each relaxation. We thus have a partial indication of the
usefulness of each type of cut for each problem we study.

In this approach, we mainly extend the work of Fischetti and Monaci [11] on the
group and corner relaxations, and part of our experiments overlaps with theirs
(specifically, on the group relaxation), with similar outcomes.

Relaxations
The group relaxation [15][13][14][16], consists in dropping non-negativity con-
straints on all basic variables, i.e. given B and N the index set of respectively
basic and nonbasic variables in the optimal solution of PLP,

Pgroup = min{cTx : Ax = b, xj ≥ 0 ∀j ∈ N, xj ∈ Z ∀j ∈ J}

The mixed integer set PI , presented in [6] and [8], is related to the one suggested
in [3] for deriving inequalities from two rows of the simplex tableau

PI = min{cTx : Ax = b, xj ≥ 0 ∀j ∈ N ∪ J, xj ∈ Z ∀j ∈ J ∩B}

The set “PI+lifting” adds back to PI the integrality constraints on the non-basic
variables [9][7].

The relaxation “x-bounded PI” adds lower and upper bounds (when available in
the original problem) on the basic variables of PI [10][4][12], while “s-bounded
PI” considers bounds on the non-basic variables [2].
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