Permutations in the factorization of LP bases

Laurent Poirrier*

Joint work with Ricardo Fukasawa*

* Combinatorics \& Optimization, UWaterloo

$$
\begin{align*}
\min & c^{T} x \\
\text { s.t. } & A x=b \tag{LP}\\
& x \geq 0
\end{align*}
$$

We want x in

$$
B x=b .
$$

We find L, U triangular s.t. $L U=B$

$$
\begin{aligned}
L U x & =b \\
L \underbrace{(U x)}_{y} & =b
\end{aligned}
$$

$$
L y=b
$$

Why a custom LU code for LP?

B is not:

- symmetric and positive definite
- block structured
- band structured
B is a submatrix of A :
Property P1: "partially" triangular
Property P2: one column changes after each iteration

P1. Partially triangular permutation

\exists permutations P, Q s.t. $P B Q=$

[See e.g. "Computing Sparse LU Factorizations for Large-Scale Linear Programming Bases", Suhl, Suhl, 1990]

P1. Size of the nucleus G

LPs sorted by nucleus size
["On the factorization of simplex basis matrices", Luce, Duintjer Tebbens, Liesen, Nabben, Grötschel, Koch, Schenk, 2009]

P1. Finding a partially triangular permutation

Proposition:
Permuting singletons to the front yields a minimal size nucleus.

P1. Finding a partially triangular permutation

Proposition:
Permuting singletons to the front yields a minimal size nucleus.

P1. Factorization time

MIPLIB 2010 root nodes:
$\mu \mathrm{s} / \mathrm{it}$

permute				Gauss
	710	40%	25%	18%

$$
O\left(m n_{\mathrm{nz}}\right) \quad O\left(m n_{\mathrm{nz}}^{2}\right)
$$

P2. Forrest-Tomlin

$$
\begin{aligned}
& B^{\prime}=B-B e_{i} e_{i}^{T}+B a_{j} e_{i}^{T} \\
& =L U-L U e_{i} e_{i}^{T}+\quad a_{j} e_{i}^{T} \\
& =L\left(U-U e_{i} e_{i}^{T}+L^{-1} a_{j} e_{i}^{T}\right) \\
& =L U^{\prime}
\end{aligned}
$$

P2. Forrest-Tomlin

P2. Forrest-Tomlin, after k iterations

$$
B=L \underbrace{\eta_{1} \cdots \eta_{k}}_{H} U
$$

$$
\begin{array}{rlrlr}
B^{\prime} & =B & - & B e_{i} e_{i}^{T} & + \\
a_{j} e_{i}^{T} \\
& =L H U & - & L H U e_{i} e_{i}^{T} & +
\end{array}
$$

P2. Refactorization time

Further improvement...

$$
\cdots(\sqrt{n})
$$

Reid's idea

- Finds a triangular permutation: 58% of iterations
- Running time:

Assumption: no row-singletons in $2, \ldots, s$

Case 1: E_{11} row-singleton

Case 2: $E_{1 j}$ row-singleton

Case 2: $E_{1 j}$ row-singleton

One-path

Dropping the assumption

Results

- Finds a triangular permutation: 58\% of iterations
- Running time:

- Avoids Forrest-Tomlin
- Fewer η matrices
- Sparser rhs

Summary

- A sparse method for permuting out the spike.
- Can replace Forrest-Tomlin in 58\% of iterations.
- Decreases density of triangular solve intermediate vectors.
\qquad

Results

- Finds a triangular permutation: 58\% of iterations
- Running time:

Benchmark framework

Instances:
MIPLIB 2010 benchmark set root nodes, after CPLEX MIP preprocessing.

In CPlex:

- disable LP preprocessing
- force devex pricing
- force primal simplex

Comparison unfairness

Our code:

- trained and tested on same instances, same computer
- finetuned for minimal time per iteration
- does more iterations (devex? tradeoff on sparsity?)
- all-logical starting basis (sparser!)

CPLEX:

- unusual setting (no LP preprocessing, forced devex and primal)
- stricter constraints on robustness (numerical accuracy)

Important implementation caveat

Updating the permutation vectors:

- asymmetric row/column permutations $\rightarrow \sim 2 \times$ more work
- sliding the mapping needs to be implemented carefully! the number of pivots is usually small \rightarrow
- sort pivots
- innermost loop: slide chunks of contiguous indices by a constant number

This is like in F-T, but in F-T there is only one chunk and we slide indices by exactly 1 .

