
Permutations in the factorization of LP bases

Laurent Poirrier*

Joint work with Ricardo Fukasawa*

* Combinatorics & Optimization, UWaterloo



min cTx
s.t. A x = b

x ≥ 0
(LP)





We want x in
Bx = b.

We find L,U triangular s.t. LU = B

LUx = b

L (Ux)︸ ︷︷ ︸ = b

y

Ly = b Ux = y



Why a custom LU code for LP?

B is not:

I symmetric and positive definite

I block structured

I band structured

B is a submatrix of A:

Property P1: “partially” triangular

Property P2: one column changes after each iteration



P1. Partially triangular permutation

∃ permutations P,Q s.t. PBQ =

 =



·




[See e.g. “Computing Sparse LU Factorizations for Large-Scale
Linear Programming Bases”, Suhl, Suhl, 1990]



P1. Size of the nucleus G

0

20

40

60

80

100

n
u
cl

e
u
s 

si
ze

 (
%

)

LPs sorted by nucleus size
103

104

105

106

107

b
a
si

s 
si

ze

[“On the factorization of simplex basis matrices”, Luce, Duintjer
Tebbens, Liesen, Nabben, Grötschel, Koch, Schenk, 2009]



P1. Finding a partially triangular permutation

i

j

→

1

1

Proposition:
Permuting singletons to the front yields a minimal size nucleus.



P1. Finding a partially triangular permutation

i

j

→

1

1

Proposition:
Permuting singletons to the front yields a minimal size nucleus.



P1. Factorization time

MIPLIB 2010 root nodes:

µs/it

710
permute

40%

Gauss

25% 18%

other

17%

O(m nnz) O(m n2nz)



P2. Forrest-Tomlin

B′ = B − Beie
T
i + aje

T
i

= LU − LUeie
T
i + aje

T
i

= L
(
U − Ueie

T
i + L−1aje

T
i

)
= L U ′

U ′ =







P2. Forrest-Tomlin

=

.



P2. Forrest-Tomlin, after k iterations

B = L η1 · · · ηk︸ ︷︷ ︸ U
H

B′ = B − Beie
T
i + aje

T
i

= LHU − LHUeie
T
i + aje

T
i

= LH
(
U − Ueie

T
i + (LH)−1aje

T
i

)
= LH U ′



P2. Refactorization time

µs/it

710
factorize

83%

other

17%

112
other

83% ← with Forrest-Tomlin



Further improvement...

U ′ =







Reid’s idea

I Finds a triangular permutation: 58% of iterations

I Running time:

µs/it

112
other

83% ← with Forrest-Tomlin

169 42%

other

58% ← with Forrest-Tomlin + Reid’s permute



Assumption: no row-singletons in 2, . . . , s

→



Case 1: E11 row-singleton

→



Case 2: E1j row-singleton

→ →



Case 2: E1j row-singleton

→ →



One-path

→



Dropping the assumption

→



Results

I Finds a triangular permutation: 58% of iterations

I Running time:

µs/it

112
factor

17%

solve

30%

solve

10%

other

43%

107
factor

17%

solve

29%

solve

10%

other

44% ← perm

114
cplex (primal simplex, devex, no preprocessing)

Why?

I Avoids Forrest-Tomlin

I Fewer η matrices

I Sparser rhs



Summary

I A sparse method for permuting out the spike.

I Can replace Forrest-Tomlin in 58% of iterations.

I Decreases density of triangular solve intermediate vectors.



————–



Results

I Finds a triangular permutation: 58% of iterations

I Running time:

µs/it

112
factor

17%

solve

30%

solve

10%

other

43%

107
factor

17%

solve

29%

solve

10%

other

44% ← perm

114
cplex (primal simplex, devex, no preprocessing)



Benchmark framework

Instances:

MIPLIB 2010 benchmark set root nodes, after cplex MIP
preprocessing.

In cplex:

I disable LP preprocessing

I force devex pricing

I force primal simplex



Comparison unfairness

Our code:

I trained and tested on same instances, same computer

I finetuned for minimal time per iteration

I does more iterations (devex? tradeoff on sparsity?)

I all-logical starting basis (sparser!)

cplex:

I unusual setting (no LP preprocessing, forced devex and
primal)

I stricter constraints on robustness (numerical accuracy)



Important implementation caveat

Updating the permutation vectors:

I asymmetric row/column permutations → ∼ 2× more work

I sliding the mapping needs to be implemented carefully!
the number of pivots is usually small →

I sort pivots
I innermost loop: slide chunks of contiguous indices by a

constant number

This is like in F-T, but in F-T there is only one chunk and we
slide indices by exactly 1.

pivot
pivot

slideslide

chunkchunkchunk


