The Strength of Multi-Row Relaxations

Quentin Louveaux ${ }^{1} \quad$ Laurent Poirrier ${ }^{1}$ Domenico Salvagnin ${ }^{2}$
${ }^{1}$ Université de Liège
${ }^{2}$ Università degli studi di Padova

August 2012

Motivations

- Cuts viewed as facets of relaxations of the problem
- In particular, multi-row relaxations
- Focus on exact separation
- Evaluate any relaxation

Plan

A. Separation over arbitrary mixed-integer sets
B. Application to two-row relaxations
A. Separation over arbitrary mixed-integer sets

Problem

Given

- a mixed-integer set $P \subseteq \mathbb{R}^{n}$,
- a point $x^{*} \in \mathbb{R}^{n}$,
find $\left(\alpha, \alpha_{0}\right) \in \mathbb{R}^{n+1}$ such that $\alpha^{T} x \geq \alpha_{0}$ is a valid inequality for P that separates x^{*}
or show that $x^{*} \in \operatorname{conv}(P)$.

Problem

Given

- a mixed-integer set $P \subseteq \mathbb{R}^{n}$,
- a point $x^{*} \in \mathbb{R}^{n}$,
find $\left(\alpha, \alpha_{0}\right) \in \mathbb{R}^{n+1}$ such that $\alpha^{T} x \geq \alpha_{0}$ is a valid inequality for P that separates x^{*},
or show that $x^{*} \in \operatorname{conv}(P)$.

General framework

Solve the optimization problem

$$
\begin{array}{cl}
\min & x^{* T} \alpha \\
\text { s.t. } & x^{T} \alpha \geq \alpha_{0} \quad \text { for all } x \in P
\end{array}
$$

Let $\left(\bar{\alpha}, \bar{\alpha}_{0}\right)$ be the optimal solution.
If $x^{* T} \bar{\alpha}<\bar{\alpha}_{0}, \quad$ then $\left(\bar{\alpha}, \bar{\alpha}_{0}\right)$ separates x^{*}.
If $x^{* T} \bar{\alpha} \geq \bar{\alpha}_{0}, \quad$ then $x^{*} \in \operatorname{conv}(P)$.

General framework

Solve the optimization problem

$$
\begin{array}{cl}
\min & x^{* T} \alpha \\
\text { s.t. } & x^{T} \alpha \geq \alpha_{0} \quad \text { for all } x \in P \\
& <\text { norm. }>
\end{array}
$$

Let $\left(\bar{\alpha}, \bar{\alpha}_{0}\right)$ be the optimal solution.
If $x^{* T} \bar{\alpha}<\bar{\alpha}_{0}, \quad$ then $\left(\bar{\alpha}, \bar{\alpha}_{0}\right)$ separates x^{*}.
If $x^{* T} \bar{\alpha} \geq \bar{\alpha}_{0}, \quad$ then $x^{*} \in \operatorname{conv}(P)$.

Row generation

1. Consider the relaxation of the separation problem

$$
\begin{array}{cc}
\min & x^{* T} \alpha \\
\text { s.t. } & x^{T} \alpha \geq \alpha_{0} \quad \text { for all } x \in S \subseteq P \\
<\text { norm. }>
\end{array}
$$

Let $\left(\bar{\alpha}, \bar{\alpha}_{0}\right)$ be an optimal solution.
2. Now solve the MIP
and let x^{p} be a finite optimal solution.

\square

Row generation

1. Consider the relaxation of the separation problem

$$
\begin{array}{cc}
\min & x^{* T} \alpha \\
\text { s.t. } & x^{T} \alpha \geq \alpha_{0} \quad \text { for all } x \in S \subseteq P \\
<\text { norm. }>
\end{array}
$$

Let $\left(\bar{\alpha}, \bar{\alpha}_{0}\right)$ be an optimal solution.
2. Now solve the MIP

$$
\begin{array}{cl}
\min & \bar{\alpha}^{T} x \\
\text { s.t. } & x \subseteq P \tag{slave}
\end{array}
$$

and let x^{p} be a finite optimal solution.

Row generation

1. Consider the relaxation of the separation problem

$$
\begin{array}{cc}
\min & x^{* T} \alpha \\
\text { s.t. } & x^{T} \alpha \geq \alpha_{0} \quad \text { for all } x \in S \subseteq P \\
<\text { norm. }>
\end{array}
$$

Let $\left(\bar{\alpha}, \bar{\alpha}_{0}\right)$ be an optimal solution.
2. Now solve the MIP

$$
\begin{array}{cl}
\min & \bar{\alpha}^{T} x \\
\text { s.t. } & x \subseteq P \tag{slave}
\end{array}
$$

and let x^{p} be a finite optimal solution.

If $\bar{\alpha}^{T} x^{p} \geq \bar{\alpha}_{0}$, then $\left(\bar{\alpha}, \bar{\alpha}_{0}\right)$ is valid for P.
If $\bar{\alpha}^{T} x^{p}<\bar{\alpha}_{0}, \quad$ then $S:=S \cup\left\{x^{p}\right\}$.

Computational example

Instance: bell3a
Constraints: 123
Variables: 133 (71 integer: 32 general, 39 binaries)
Models: 82 five-row models read from an optimal tableau
Cuts: 37 (17 tight at the end)
Gap closed: 59.02% (from 39.03% by GMIs)

Time:	1615.70 s
Iterations:	107647

Two-phases: Phase one

$\alpha:$

Two-phases: Phase one

Two-phases: Phase two

Two-phases summary

- The feasible region of phase-1 slave is $P \cap\left\{x: x_{N}=x_{N}^{*}\right\}$
> "phase-1 separates" iff "phase-2 separates" \rightarrow whenever $x^{*} \in \operatorname{conv}(P)$, phase- 2 is avoided
- Optimal objective function values are the same . phase 2 master objective function is 0

Two-phases summary

- The feasible region of phase-1 slave is $P \cap\left\{x: x_{N}=x_{N}^{*}\right\}$
- "phase-1 separates" iff "phase-2 separates"
\rightarrow whenever $x^{*} \in \operatorname{conv}(P)$, phase- 2 is avoided
- Optimal objective function values are the same \rightarrow nhase- 2 master obiective function is 0

Two-phases summary

- The feasible region of phase-1 slave is $P \cap\left\{x: x_{N}=x_{N}^{*}\right\}$
- "phase-1 separates" iff "phase-2 separates"
\rightarrow whenever $x^{*} \in \operatorname{conv}(P)$, phase- 2 is avoided
- Optimal objective function values are the same
\rightarrow phase-2 master objective function is 0

Computational example (2-phases)

(bell3a, 82 five-row models, 37 cuts, $59.02 \% \mathrm{gc}$)

	original	2-phases
Time:	1615.70 s	161.15 s
Iterations:	107647	23822

Computational example (2-phases)

(bell3a, 82 five-row models, 37 cuts, $59.02 \% \mathrm{gc}$)

	original	2-phases
Time:	1615.70 s	161.15 s
Iterations:	107647	23822

Lifting binary variables

Lifting binary variables

Lifting binary variables

Computational example (lifting binaries)

(bell3a, 82 five-row models, 37 cuts, $59.02 \% \mathrm{gc}$)

	original	2-phases	lifting
Time:	1615.70 s	161.15 s	136.54 s
Iterations:	107647	23822	23231

Computational example (lifting binaries)

(bell3a, 82 five-row models, 37 cuts, $59.02 \% \mathrm{gc}$)

	original	2-phases	lifting
Time:	1615.70 s	161.15 s	136.54 s
Iterations:	107647	23822	23231

Sequential phase-2 ("phase-S")

Sequential phase-2 ("phase-S")

Sequential phase-2 ("phase-S")

Sequential phase-2 ("phase-S")

Computational example (phase S)

(bell3a, 82 five-row models, 37 cuts, $59.02 \% \mathrm{gc}$)

	original	2-phases	lifting	phase S
Time:	1615.70 s	161.15 s	136.54 s	5.84 s
Iterations:	107647	23822	23231	2497

Computational example (phase S)

(bell3a, 82 five-row models, 37 cuts, $59.02 \% \mathrm{gc}$)

	original	2-phases	lifting	phase S
Time:	1615.70 s	161.15 s	136.54 s	5.84 s
Iterations:	107647	23822	23231	2497

Solver tricks: callbacks

Solving slave MIPs

$$
\begin{array}{cl}
\min & \bar{\alpha}^{T} X \\
\text { s.t. } & x \subseteq P
\end{array}
$$

Solver tricks: callbacks

Solving slave MIPs

$$
\begin{array}{cl}
\min & \bar{\alpha}^{T} x \\
\text { s.t. } & x \subseteq P
\end{array}
$$

- Feasible solution \hat{x} with $\bar{\alpha}^{T} \hat{x}<\bar{\alpha}_{0}$
$\rightarrow \hat{x}$ can be added to S.
- Dual bound \underline{z} reaches $\bar{\alpha}_{0}$, $\rightarrow\left(\bar{\alpha}, \bar{\alpha}_{0}\right)$ is valid for P.

Solver tricks: callbacks

Solving slave MIPs

$$
\begin{array}{cl}
\min & \bar{\alpha}^{\top} x \\
\text { s.t. } & x \subseteq P
\end{array}
$$

- Feasible solution \hat{x} with $\bar{\alpha}^{T} \hat{x}<\bar{\alpha}_{0}$
$\rightarrow \hat{x}$ can be added to S.
- Dual bound \underline{z} reaches $\bar{\alpha}_{0}$,
$\rightarrow\left(\bar{\alpha}, \bar{\alpha}_{0}\right)$ is valid for P.

Computational example (solver tricks)

(bell3a, 82 five-row models, 37 cuts, $59.02 \% \mathrm{gc}$)

	original	2-phases	lifting	phase S	cb
Time:	1615.70 s	161.15 s	136.54 s	5.84 s	4.65 s
Iterations:	107647	23822	23231	2497	2497

Computational example (solver tricks)

(bell3a, 82 five-row models, 37 cuts, $59.02 \% \mathrm{gc}$)

	original	2-phases	lifting	phase S	cb
Time:	1615.70 s	161.15 s	136.54 s	5.84 s	4.65 s
Iterations:	107647	23822	23231	2497	2497

Computational example (summary)

(bell3a, 82 five-row models, 37 cuts, $59.02 \% \mathrm{gc}$)

	original	2-phases	lifting	phase S	cb
Time:	$347 \times$	$35 \times$	$29 \times$	$1.26 \times$	1
	1615.70 s	161.15 s	136.54 s	5.84 s	4.65 s
Iterations:	107647	23822	23231	2497	2497
	$43 \times$	$10 \times$	$9 \times$	1	1

B. Application to two-row relaxations

Objectives

Mainly, evaluate and compare

- the intersection cut model
- a few strengthenings of it
- a full two-row model

Two-row relaxation: which models?

- We are still far from a closure
- What reasonable set of two-models can we select? \rightarrow All models read from a simplex tableau $\rightarrow O\left(\mathrm{~m}^{2}\right)$ tmon-rom models

Two-row relaxation: which models?

- We are still far from a closure
- What reasonable set of two-models can we select?
\rightarrow All models read from a simplex tableau $\rightarrow O\left(m^{2}\right)$ two-row models

Two-row relaxation: which models?

- We are still far from a closure
- What reasonable set of two-models can we select?
\rightarrow All models read from a simplex tableau
$\rightarrow O\left(m^{2}\right)$ two-row models

"all" two-row models: separation loop

Let $x^{*} \leftarrow$ LP optimium
Read the two-row models from optimal tableau.
Read and add GMIs from that tableau.
do \{
Let $x^{*} \leftarrow$ new LP optimum. Separate x^{*} with the two-row models.
$\}$ while (cuts were found).

"all" two-row models: separation loop

Let $x^{*} \leftarrow$ LP optimium
Read the two-row models from optimal tableau.
Read and add GMIs from that tableau.
do \{
Let $x^{*} \leftarrow$ new LP optimum. Separate x^{*} with the two-row models.
$\}$ while (cuts were found).

"all" two-row models: separation loop

Let $x^{*} \leftarrow$ LP optimium
Read the two-row models from optimal tableau.
Read and add GMIs from that tableau.
do \{
Let $x^{*} \leftarrow$ new LP optimum. Separate x^{*} with the two-row models.
$\}$ while (cuts were found).

"all" two-row models: results

Computations on the 62 MIPLIB 3.0 (preprocessed) instances for which
(a). the integrality gap is not zero, and
(b). the optimal MIP solution is known.

"all" two-row models: results

We have a result for $55 / 62$ instances (4 numerical, 3 memory).

"all" two-row models: results

We have a result for $55 / 62$ instances (4 numerical, 3 memory).

	cuts	gc\%
GMI	24.800	22.60%
All 2-row	72.382	37.49%

For 13 instances, the separation is exact.

"all" two-row models: results

We have a result for $55 / 62$ instances (4 numerical, 3 memory).

	cuts	gc\%
GMI	24.800	22.60%
All 2-row	72.382	37.49%

For 13 instances, the separation is exact.

Heuristic selection of two-row models

Issue:

- $O\left(m^{2}\right)$ is already a large number of models

Rationale:

- MIPLIB models are mostly sparse
- Multi-cuts from rows with no common support are linear
combinations of the corresponding one-row cuts

Heuristic selection of two-row models

Issue:

- $O\left(m^{2}\right)$ is already a large number of models

Hypothesis:

- Not all models are necessary to achieve good separation Rationale: * MIPL'IB models are mostly sparse - Multi-cuts from rows with no common support are linear combinations of the corresponding one-row cuts

Heuristic selection of two-row models

Issue:

- $O\left(m^{2}\right)$ is already a large number of models

Hypothesis:

- Not all models are necessary to achieve good separation

Rationale:

- MIPLIB models are mostly sparse
- Multi-cuts from rows with no common support are linear combinations of the corresponding one-row cuts

Heuristic selection of two-row models: results

With an arbitrary limit of m two-row models, we have a result for $58 / 62$ instances (1 numerical, 3 memory).

On the 55 common results,

For 25 instances, the separation is exact.

Heuristic selection of two-row models: results

With an arbitrary limit of m two-row models, we have a result for $58 / 62$ instances (1 numerical, 3 memory).

On the 55 common results,

	cuts	gc\%
GMI	24.800	22.60%
All 2-row	72.382	37.49%
Heuristic	57.418	35.19%

Heuristic selection of two-row models: results

With an arbitrary limit of m two-row models, we have a result for $58 / 62$ instances (1 numerical, 3 memory).

On the 55 common results,

	cuts	gc\%
GMI	24.800	22.60%
All 2-row	72.382	37.49%
Heuristic	57.418	35.19%

For 25 instances, the separation is exact.

Two-row intersection cuts

$$
\begin{aligned}
& \text { basic } \\
& \text { nonbasic } \\
& \overbrace{x_{1}} \overbrace{x_{2} x_{2}-x_{4}+x_{5}+3 x_{6}}^{-x_{3} \quad-x_{5}+2 x_{6}}=r-0.4 \\
& 0 \leq x_{1} \leq 1 \\
& 0 \leq x_{2} \leq 1 \\
& 0 \leq x_{3} \leq 1 \\
& 0 \leq x_{4} \leq 1 \\
& 0 \leq x_{5} \leq 1 \\
& 0 \leq x_{6} \leq 1
\end{aligned}
$$

Two-row intersection cuts

Two-row intersection cuts

$$
\begin{aligned}
& \text { basic } \\
& \text { nonbasic } \\
& \overbrace{x_{1}} \overbrace{\substack{+2 x_{3}-x_{4} \\
x_{2} \\
-x_{3} \\
x_{1},-, x_{3}, x_{4}, x_{5}, x_{6} \in \mathbb{Z} \\
-x_{5}+2 x_{6}}}=r-0.4 \\
& 0 \leq x_{1} \leq 1 \\
& 0 \leq x_{2} \leq 1 \\
& 0 \leq x_{3} \leq 1 \\
& 0 \leq x_{4} \leq 1 \\
& 0 \leq x_{5} \leq 1 \\
& 0 \leq x_{6} \leq 1
\end{aligned}
$$

Two-row intersection cuts

$$
\begin{aligned}
& \text { basic } \\
& \text { nonbasic } \\
& \overbrace{x_{1}} \overbrace{x_{2} x_{2}-x_{4}+x_{5}+3 x_{6}}^{-x_{3} \quad-x_{5}+2 x_{6}}=r-0.4 \\
& 0 \leq x_{1} \leq 1 \\
& 0 \leq x_{2} \leq 1 \\
& 0 \leq x_{3} \leq 1 \\
& 0 \leq x_{4} \leq 1 \\
& 0 \leq x_{5} \leq 1 \\
& 0 \leq x_{6} \leq 1
\end{aligned}
$$

Two-row intersection cuts

$$
\overbrace{x_{1}}^{\text {basic }} \overbrace{\substack{+2 x_{3}-x_{4} \\ x_{2} \\-x_{3} \quad+x_{5}+3 x_{6} \\-x_{5}+2 x_{6}}}^{\text {nonbasic }}=-0.2
$$

Two-row intersection cuts

Two-row intersection cuts

Two-row intersection cuts + strengthening

$$
\begin{array}{ll}
\text { ل}: & \text { keep } \\
\text { B: } & \text { keep binding } \\
\times: & \text { drop }
\end{array}
$$

Two-row intersection cuts + strengthening

$$
\begin{array}{ll}
\text { ل: } & \text { keep } \\
\text { B: } & \text { keep binding } \\
\times: & \text { drop }
\end{array}
$$

Two-row intersection cuts + strengthening

	basic			nonbasic	
	$\in \mathbb{Z}$	bnd.		$\in \mathbb{Z}$	bnd.
$P_{\text {I }}$	$\sqrt{ }$	\times		\times	B
S-free	$\sqrt{ }$	$\sqrt{ }$		\times	B
lifting					B
$P_{I U}$					

$$
\begin{array}{ll}
\text { ل}: & \text { keep } \\
\text { B: } & \text { keep binding } \\
\times: & \text { drop }
\end{array}
$$

Two-row intersection cuts + strengthening

	basic		nonbasic	
	$\in \mathbb{Z}$	bnd	$\in \mathbb{Z}$	bnd.
P_{1}	\checkmark	\times	\times	B
S-free	\checkmark	\checkmark	\times	B
lifting	\checkmark	,	\checkmark	B

$$
\begin{array}{ll}
\text { ل}: & \text { keep } \\
\text { B: } & \text { keep binding } \\
\times: & \text { drop }
\end{array}
$$

Two-row intersection cuts + strengthening

	basic			nonbasic	
	$\in \mathbb{Z}$	bnd.		$\in \mathbb{Z}$	bnd.
P_{I}	$\sqrt{ }$	\times		\times	B
$S_{\text {-free }}$	$\sqrt{ }$	$\sqrt{ }$		\times	B
lifting	$\sqrt{ }$	\times		$\sqrt{ }$	B
$P_{I U}$	$\sqrt{ }$	\times		\times	$\sqrt{ }$

$$
\begin{array}{ll}
\text { ل }: & \text { keep } \\
\text { B: } & \text { keep binding } \\
\times: & \text { drop }
\end{array}
$$

Two-row intersection cuts + strengthening

	basic			nonbasic	
	$\in \mathbb{Z}$	bnd.		$\in \mathbb{Z}$	bnd.
P_{I}	$\sqrt{ }$	\times		\times	B
S-free	$\sqrt{ }$	$\sqrt{ }$		\times	B
lifting	$\sqrt{ }$	\times		$\sqrt{ }$	B
$P_{I U}$	$\sqrt{ }$	\times		\times	$\sqrt{ }$
full 2-row	$\sqrt{ }$	$\sqrt{ }$		$\sqrt{ }$	$\sqrt{ }$

$$
\begin{array}{ll}
\text { ل }: & \text { keep } \\
\text { B: } & \text { keep binding } \\
\times: & \text { drop }
\end{array}
$$

Two-row intersection cuts and strengthenings

51 common instances:

	cuts	$\mathrm{gc} \%$	exact
GMI	28.240	22.46%	all
P_{I}	29.420	27.65%	42
S-free	38.380	30.22%	29
lifting	22.700	27.35%	10
$P_{I U}$	42.640	28.56%	25
full 2-row	55.500	35.66%	22

Two-row intersection cuts and strengthenings

51 common instances:

	cuts	$\mathrm{gc} \%$	exact
GMI	28.240	22.46%	all
P_{I}	29.420	27.65%	42
$S_{\text {-free }}$	38.380	30.22%	29
lifting	22.700	27.35%	10
$P_{I U}$	42.640	28.56%	25
full 2-row	55.500	35.66%	22

Two-row intersection cuts and strengthenings

51 common instances:

	cuts	$\mathrm{gc} \%$	exact
GMI	28.240	22.46%	all
P_{I}	29.420	27.65%	42
S-free	38.380	30.22%	29
lifting	22.700	27.35%	10
$P_{I U}$	42.640	28.56%	25
full 2-row	55.500	35.66%	22

Two-row intersection cuts and strengthenings

51 common instances:

Two-row intersection cuts and strengthenings

15 common instances:

	cuts	$\mathrm{gc} \%$	exact
GMI	20.667	26.541	all
P_{I}	20.933	33.535	all
$S_{\text {-free }}$	25.400	35.229	all
$P_{I U}$	36.600	36.257	all
full 2-row	57.267	43.956	all

Two-row intersection cuts and strengthenings

7 common instances:
[bell5, blend2, egout, khb05250, misc03, misc07, set1ch]

	cuts	gc\%	exact
GMI	25.571	24.744	all
P_{I}	25.143	33.641	all
S-free	28.714	33.836	all
lifting	25.571	33.716	all
$P_{I U}$	47.857	37.531	all
full 2-row	48.000	37.583	all

Bases

- We depend on the optimal basis

- Will the gap closed by two-row cuts survive more GMIs?

Bases

- We depend on the optimal basis

- Will the gap closed by two-row cuts survive more GMIs?

Bases

- We depend on the optimal basis
- Will the gap closed by two-row cuts survive more GMIs?

Relax and cut

- Convenient way to explore different (feasible) bases.
- Now trying to separate a point with a much stronger LP bound (obtained by adding GMIs).

Relax and cut

- Convenient way to explore different (feasible) bases.
- Now trying to separate a point with a much stronger LP bound (obtained by adding GMIs)

Relax and cut

- Convenient way to explore different (feasible) bases.
- Now trying to separate a point with a much stronger LP bound (obtained by adding GMIs).

Relax and cut: results

43 common instances:

	cuts	gc\%	exact
GMI	24.814	23.282	all
2-row i.c.	31.884	28.838	42
full 2-row	62.140	36.080	22
relax\&cut GMI	60.372	34.970	all
relax\&cut 2-row i.c.	63.163	41.951	37
relax\&cut full 2-row	76.767	47.277	12

Future

- More rows
- More tricks
- More tests

Future

- More rows
- More tricks
- More tests

Future

- More rows
- More tricks
- More tests

Future

- More rows
- More tricks
- More tests
\longrightarrow

