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2Università degli studi di Padova

August 2012



Motivations

I Cuts viewed as facets of relaxations of the problem

I In particular, multi-row relaxations

I Focus on exact separation

I Evaluate any relaxation



Plan

A. Separation over arbitrary mixed-integer sets

B. Application to two-row relaxations



A. Separation over arbitrary mixed-integer sets



Problem

Given

I a mixed-integer set P ⊆ Rn,

I a point x∗ ∈ Rn,

find (α, α0) ∈ Rn+1 such that αT x ≥ α0 is a valid inequality for P
that separates x∗,

or show that x∗ ∈ conv(P).



Problem

Given

I a mixed-integer set P ⊆ Rn,

I a point x∗ ∈ Rn,

find (α, α0) ∈ Rn+1 such that αT x ≥ α0 is a valid inequality for P
that separates x∗,

or show that x∗ ∈ conv(P).



General framework

Solve the optimization problem

min x∗Tα
s.t. xTα ≥ α0 for all x ∈ P

<norm.>

Let (ᾱ, ᾱ0) be the optimal solution.

If x∗T ᾱ < ᾱ0, then (ᾱ, ᾱ0) separates x∗.

If x∗T ᾱ ≥ ᾱ0, then x∗ ∈ conv(P).
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Row generation
1. Consider the relaxation of the separation problem

min x∗Tα
s.t. xTα ≥ α0 for all x ∈ S ⊆ P

<norm.>

(master)

Let (ᾱ, ᾱ0) be an optimal solution.

2. Now solve the MIP

min ᾱT x
s.t. x ⊆ P

(slave)

and let xp be a finite optimal solution.

If ᾱT xp ≥ ᾱ0, then (ᾱ, ᾱ0) is valid for P.

If ᾱT xp < ᾱ0, then S := S ∪ {xp}.
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Computational example

Instance: bell3a
Constraints: 123

Variables: 133 (71 integer: 32 general, 39 binaries)
Models: 82 five-row models read from an optimal tableau

Cuts: 37 (17 tight at the end)
Gap closed: 59.02% (from 39.03% by GMIs)

Time: 1615.70s
Iterations: 107647



Two-phases: Phase one

x∗ between bounds x∗ at bounds︷ ︸︸ ︷ ︷ ︸︸ ︷
x : xB xN︸ ︷︷ ︸

fix to bound

α : αB αN.︸︷︷︸
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Two-phases: Phase two

x∗ between bounds x∗ at bounds︷ ︸︸ ︷ ︷ ︸︸ ︷
x : xB xN︸ ︷︷ ︸

fix to bound

α : αB αN.︸︷︷︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
fixed lift



Two-phases summary

I The feasible region of phase-1 slave is P ∩ {x : xN = x∗
N}

I “phase-1 separates” iff “phase-2 separates”

→ whenever x∗ ∈ conv(P), phase-2 is avoided

I Optimal objective function values are the same

→ phase-2 master objective function is 0
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original 2-phases

Time: 1615.70s 161.15s
Iterations: 107647 23822

(bell3a, 82 five-row models, 37 cuts, 59.02%gc)
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Lifting binary variables

x∗ between bounds x∗ at bounds︷ ︸︸ ︷ ︷ ︸︸ ︷
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Computational example (lifting binaries)

original 2-phases lifting

Time: 1615.70s 161.15s 136.54s
Iterations: 107647 23822 23231
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Sequential phase-2 (“phase-S”)

x∗ between bounds x∗ at bounds︷ ︸︸ ︷ ︷ ︸︸ ︷
binary︷ ︸︸ ︷

x : xB xNbin xk xN′′︸ ︷︷ ︸
(fixed to bnd)

α : αB αNbin αk αN′′︸ ︷︷ ︸ ︸ ︷︷ ︸
fixed zero
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Computational example (phase S)

original 2-phases lifting phase S

Time: 1615.70s 161.15s 136.54s 5.84s
Iterations: 107647 23822 23231 2497

(bell3a, 82 five-row models, 37 cuts, 59.02%gc)
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Solver tricks: callbacks

Solving slave MIPs
min ᾱT x
s.t. x ⊆ P,

I Feasible solution x̂ with ᾱT x̂ < ᾱ0

→ x̂ can be added to S .

I Dual bound z reaches ᾱ0,

→ (ᾱ, ᾱ0) is valid for P.
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→ x̂ can be added to S .

I Dual bound z reaches ᾱ0,
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Computational example (solver tricks)

original 2-phases lifting phase S cb
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Computational example (summary)

original 2-phases lifting phase S cb

347× 35× 29× 1.26× 1
Time: 1615.70s 161.15s 136.54s 5.84s 4.65s

Iterations: 107647 23822 23231 2497 2497
43× 10× 9× 1 1

(bell3a, 82 five-row models, 37 cuts, 59.02%gc)



B. Application to two-row relaxations



Objectives

Mainly, evaluate and compare

I the intersection cut model

I a few strengthenings of it

I a full two-row model



Two-row relaxation: which models?

I We are still far from a closure

I What reasonable set of two-models can we select?

→ All models read from a simplex tableau

→ O(m2) two-row models
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“all” two-row models: separation loop

Let x∗ ← LP optimium
Read the two-row models from optimal tableau.
Read and add GMIs from that tableau.

do {
Let x∗ ← new LP optimum.
Separate x∗ with the two-row models.

} while (cuts were found).
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“all” two-row models: results

Computations on the 62 MIPLIB 3.0 (preprocessed) instances for
which

(a). the integrality gap is not zero, and

(b). the optimal MIP solution is known.



“all” two-row models: results

We have a result for 55/62 instances (4 numerical, 3 memory).

cuts gc%

GMI 24.800 22.60%
All 2-row 72.382 37.49%

For 13 instances, the separation is exact.
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Heuristic selection of two-row models

Issue:

I O(m2) is already a large number of models

Hypothesis:

I Not all models are necessary to achieve good separation

Rationale:

I MIPLIB models are mostly sparse

I Multi-cuts from rows with no common support are linear
combinations of the corresponding one-row cuts
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Heuristic 57.418 35.19%
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Two-row intersection cuts

basic nonbasic︷ ︸︸ ︷ ︷ ︸︸ ︷
x1 +2 x3 − x4 + x5 +3 x6 = 2.4
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0 ≤ x5 ≤ 1
0 ≤ x6 ≤ 1
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Two-row intersection cuts and strengthenings

51 common instances:

cuts gc% exact

GMI 28.240 22.46% all

PI 29.420 27.65% 42
S-free 38.380 30.22% 29
lifting 22.700 27.35% 10

PIU 42.640 28.56% 25

full 2-row 55.500 35.66% 22
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51 common instances:

cuts gc% exact

GMI 28.240 22.46% all
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Two-row intersection cuts and strengthenings

15 common instances:

cuts gc% exact

GMI 20.667 26.541 all

PI 20.933 33.535 all
S-free 25.400 35.229 all

PIU 36.600 36.257 all

full 2-row 57.267 43.956 all



Two-row intersection cuts and strengthenings

7 common instances:
[bell5, blend2, egout, khb05250, misc03, misc07, set1ch]

cuts gc% exact

GMI 25.571 24.744 all

PI 25.143 33.641 all
S-free 28.714 33.836 all
lifting 25.571 33.716 all

PIU 47.857 37.531 all

full 2-row 48.000 37.583 all



Bases

I We depend on the optimal basis

I Will the gap closed by two-row cuts survive more GMIs?
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Relax and cut

I Convenient way to explore different (feasible) bases.

I Now trying to separate a point with a much stronger LP
bound (obtained by adding GMIs).
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Relax and cut: results

43 common instances:

cuts gc% exact

GMI 24.814 23.282 all

2-row i.c. 31.884 28.838 42
full 2-row 62.140 36.080 22

relax&cut GMI 60.372 34.970 all

relax&cut 2-row i.c. 63.163 41.951 37
relax&cut full 2-row 76.767 47.277 12



Future

I More rows

I More tricks

I More tests
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