The Strength of Multi-Row Relaxations

Quentin Louveaux¹ Laurent Poirrier¹ Domenico Salvagnin²

・ロト・日本・モート モー うへぐ

¹Université de Liège

²Università degli studi di Padova

August 2012

Motivations

Cuts viewed as facets of relaxations of the problem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- In particular, multi-row relaxations
- Focus on exact separation
- Evaluate any relaxation

A. Separation over arbitrary mixed-integer sets

B. Application to two-row relaxations

A. Separation over arbitrary mixed-integer sets

Problem

Given

- ▶ a mixed-integer set $P \subseteq \mathbb{R}^n$,
- ▶ a point $x^* \in \mathbb{R}^n$,

find $(\alpha, \alpha_0) \in \mathbb{R}^{n+1}$ such that $\alpha^T x \ge \alpha_0$ is a valid inequality for P that separates x^* ,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

or show that $x^* \in \operatorname{conv}(P)$.

Problem

Given

- ▶ a mixed-integer set $P \subseteq \mathbb{R}^n$,
- ▶ a point $x^* \in \mathbb{R}^n$,

find $(\alpha, \alpha_0) \in \mathbb{R}^{n+1}$ such that $\alpha^T x \ge \alpha_0$ is a valid inequality for P that separates x^* ,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

or show that $x^* \in \operatorname{conv}(P)$.

General framework

Solve the optimization problem

min
$$x^{*T}\alpha$$

s.t. $x^{T}\alpha \ge \alpha_0$ for all $x \in P$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let $(\bar{\alpha}, \bar{\alpha}_0)$ be the optimal solution.

If $x^{*T}\bar{\alpha} < \bar{\alpha}_0$, then $(\bar{\alpha}, \bar{\alpha}_0)$ separates x^* . If $x^{*T}\bar{\alpha} \ge \bar{\alpha}_0$, then $x^* \in \operatorname{conv}(P)$.

General framework

Solve the optimization problem

min
$$x^{*T} \alpha$$

s.t. $x^{T} \alpha \ge \alpha_0$ for all $x \in P$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let $(\bar{\alpha}, \bar{\alpha}_0)$ be the optimal solution.

If $x^{*T}\bar{\alpha} < \bar{\alpha}_0$, then $(\bar{\alpha}, \bar{\alpha}_0)$ separates x^* . If $x^{*T}\bar{\alpha} \ge \bar{\alpha}_0$, then $x^* \in \operatorname{conv}(P)$.

Row generation

1. Consider the relaxation of the separation problem

$$\begin{array}{ll} \min & x^{*\,T}\alpha \\ \text{s.t.} & x^{T}\alpha \geq \alpha_0 \quad \text{for all } x \in S \subseteq P \\ & < \text{norm.} > \end{array} \tag{master}$$

Let $(\bar{\alpha}, \bar{\alpha}_0)$ be an optimal solution.

2. Now solve the MIP
$$\min_{\substack{\alpha \\ \text{s.t.}}} \frac{\bar{\alpha}^T x}{x \subseteq P} \qquad (\text{slave})$$

and let x^p be a finite optimal solution.

If $\bar{\alpha}^T x^p \ge \bar{\alpha}_0$, then $(\bar{\alpha}, \bar{\alpha}_0)$ is valid for P. If $\bar{\alpha}^T x^p < \bar{\alpha}_0$, then $S := S \cup \{x^p\}$.

Row generation

1. Consider the relaxation of the separation problem

$$\begin{array}{ll} \min & x^{*\,T}\alpha \\ \text{s.t.} & x^{T}\alpha \geq \alpha_0 \quad \text{for all } x \in S \subseteq P \\ & < \text{norm.} > \end{array} \tag{master}$$

Let $(\bar{\alpha}, \bar{\alpha}_0)$ be an optimal solution.

2. Now solve the MIP

$$\begin{array}{ll} \min & \bar{\alpha}^T x \\ \text{s.t.} & x \subseteq P \end{array} \tag{slave}$$

and let x^p be a finite optimal solution.

If $\bar{\alpha}^T x^p \ge \bar{\alpha}_0$, then $(\bar{\alpha}, \bar{\alpha}_0)$ is valid for P. If $\bar{\alpha}^T x^p < \bar{\alpha}_0$, then $S := S \cup \{x^p\}$.

Row generation

1. Consider the relaxation of the separation problem

$$\begin{array}{ll} \min & x^*{}^T \alpha \\ \text{s.t.} & x^T \alpha \ge \alpha_0 \quad \text{for all } x \in S \subseteq P \\ & < \text{norm.} > \end{array} \tag{master}$$

Let $(\bar{\alpha}, \bar{\alpha}_0)$ be an optimal solution.

2. Now solve the MIP

$$\begin{array}{ll} \min & \bar{\alpha}^T x \\ \text{s.t.} & x \subseteq P \end{array} \tag{slave}$$

and let x^p be a finite optimal solution.

If
$$\bar{\alpha}^T x^p \ge \bar{\alpha}_0$$
, then $(\bar{\alpha}, \bar{\alpha}_0)$ is valid for *P*.
If $\bar{\alpha}^T x^p < \bar{\alpha}_0$, then $S := S \cup \{x^p\}$.

Computational example

Instance:	bell3a
Constraints:	123
Variables:	133 (71 integer: 32 general, 39 binaries)
Models:	82 five-row models read from an optimal tableau

Cuts: 37 (17 tight at the end) Gap closed: 59.02% (from 39.03% by GMIs)

Time:	1615.70s
Iterations:	107647

Two-phases: Phase one

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Two-phases: Phase one

Two-phases: Phase two

Two-phases summary

• The feasible region of phase-1 slave is $P \cap \{x : x_N = x_N^*\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▶ "phase-1 separates" iff "phase-2 separates" → whenever x* ∈ conv(P), phase-2 is avoided

Optimal objective function values are the same

 phase-2 master objective function is 0

▶ The feasible region of phase-1 slave is $P \cap \{x : x_N = x_N^*\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

phase-1 separates" iff "phase-2 separates"
 → whenever x* ∈ conv(P), phase-2 is avoided

▶ Optimal objective function values are the same → phase-2 master objective function is 0 ▶ The feasible region of phase-1 slave is $P \cap \{x : x_N = x_N^*\}$

phase-1 separates" iff "phase-2 separates"
 → whenever x* ∈ conv(P), phase-2 is avoided

▶ Optimal objective function values are the same
 → phase-2 master objective function is 0

Computational example (2-phases)

(bell3a, 82 five-row models, 37 cuts, 59.02%gc)

	original	2-phases
Time:	1615.70s	161.15s
Iterations:	107647	23822

・ロト・日本・モート モー うへで

Computational example (2-phases)

(bell3a, 82 five-row models, 37 cuts, 59.02%gc)

	original	2-phases
Time:	1615.70s	161.15s
Iterations:	107647	23822

Lifting binary variables

Lifting binary variables

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

Lifting binary variables

Computational example (lifting binaries)

(bell3a, 82 five-row models, 37 cuts, 59.02%gc)

	original	2-phases	lifting
Time:	1615.70s	161.15s	136.54s
Iterations:	107647	23822	23231

Computational example (lifting binaries)

(bell3a, 82 five-row models, 37 cuts, 59.02%gc)

	original	2-phases	lifting
Time:	1615.70s	161.15s	136.54s
Iterations:	107647	23822	23231

くして 「「」 (山下) (山下) (山下) (山下)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Computational example (phase S)

(bell3a, 82 five-row models, 37 cuts, 59.02%gc)

	original	2-phases	lifting	phase S
Time:	1615.70s	161.15s	136.54s	5.84s
Iterations:	107647	23822	23231	2497

Computational example (phase S)

(bell3a, 82 five-row models, 37 cuts, 59.02%gc)

	original	2-phases	lifting	phase S
Time:	1615.70s	161.15s	136.54s	5.84s
Iterations:	107647	23822	23231	2497

Solver tricks: callbacks

Solving slave MIPs

 $\begin{array}{ll} \min & \bar{\alpha}^T x \\ \text{s.t.} & x \subseteq P, \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Feasible solution \hat{x} with $\bar{\alpha}^T \hat{x} < \bar{\alpha}_0$

 $\rightarrow \hat{x}$ can be added to S.

• Dual bound \underline{z} reaches $\bar{\alpha}_0$,

 $\rightarrow (\bar{\alpha}, \bar{\alpha}_0)$ is valid for *P*.

Solver tricks: callbacks

Solving slave MIPs

 $\begin{array}{ll} \min & \bar{\alpha}^T x \\ \text{s.t.} & x \subseteq P, \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Feasible solution \hat{x} with $\bar{\alpha}^T \hat{x} < \bar{\alpha}_0$

 $\rightarrow \hat{x}$ can be added to S.

▶ Dual bound <u>z</u> reaches $\bar{\alpha}_0$, → $(\bar{\alpha}, \bar{\alpha}_0)$ is valid for *P*.

Solver tricks: callbacks

Solving slave MIPs

 $\begin{array}{ll} \min & \bar{\alpha}^T x \\ \text{s.t.} & x \subseteq P, \end{array}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Feasible solution \hat{x} with $\bar{\alpha}^T \hat{x} < \bar{\alpha}_0$

 $\rightarrow \hat{x}$ can be added to S.

▶ Dual bound \underline{z} reaches $\overline{\alpha}_0$,

 \rightarrow ($\bar{\alpha}, \bar{\alpha}_0$) is valid for *P*.

Computational example (solver tricks)

(bell3a, 82 five-row models, 37 cuts, 59.02%gc)

	original	2-phases	lifting	phase S	cb
Time:	1615.70s	161.15s	136.54s	5.84s	4.65s
Iterations:	107647	23822	23231	2497	2497

・ロト・日本・モート モー うへで

Computational example (solver tricks)

(bell3a, 82 five-row models, 37 cuts, 59.02%gc)

	original	2-phases	lifting	phase S	cb
Time:	1615.70s	161.15s	136.54s	5.84s	4.65s
Iterations:	107647	23822	23231	2497	2497

・ロト・日本・モート モー うへで
Computational example (summary)

(bell3a, 82 five-row models, 37 cuts, 59.02%gc)

	original	2-phases	lifting	phase S	cb
	347×	35×	29 ×	1.26 imes	1
Time:	1615.70s	161.15s	136.54s	5.84s	4.65s
Iterations:	107647	23822	23231	2497	2497
	43×	10 imes	9×	1	1

B. Application to two-row relaxations

<□ > < @ > < E > < E > E のQ @

Objectives

Mainly, evaluate and compare

- the intersection cut model
- a few strengthenings of it

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

a full two-row model

Two-row relaxation: which models?

We are still far from a closure

What reasonable set of two-models can we select?
 → All models read from a simplex tableau
 → O(m²) two-row models

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Two-row relaxation: which models?

- We are still far from a closure
- What reasonable set of two-models can we select?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

ightarrow All models read from a simplex tableau ightarrow $O(m^2)$ two-row models

Two-row relaxation: which models?

- We are still far from a closure
- What reasonable set of two-models can we select?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- \rightarrow All models read from a simplex tableau
- $ightarrow {\it O}(m^2)$ two-row models

"all" two-row models: separation loop

```
Let x^* \leftarrow LP optimium
Read the two-row models from optimal tableau.
Read and add GMIs from that tableau.
```

```
do {
    Let x* ← new LP optimum.
    Separate x* with the two-row models.
} while (cuts were found).
```

"all" two-row models: separation loop

```
Let x^* \leftarrow LP optimium
Read the two-row models from optimal tableau.
Read and add GMIs from that tableau.
```

```
do {
Let x^* \leftarrow new LP optimum.
Separate x^* with the two-row models.
} while (cuts were found).
```

"all" two-row models: separation loop

Let $x^* \leftarrow LP$ optimium Read the two-row models from optimal tableau. Read and add GMIs from that tableau.

```
do {
    Let x* ← new LP optimum.
    Separate x* with the two-row models.
} while (cuts were found).
```

Computations on the 62 MIPLIB 3.0 (preprocessed) instances for which

- (a). the integrality gap is not zero, and
- (b). the optimal MIP solution is known.

We have a result for 55/62 instances (4 numerical, 3 memory).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For 13 instances, the separation is exact.

We have a result for 55/62 instances (4 numerical, 3 memory).

	cuts	gc%
GMI	24.800	22.60%
All 2-row	72.382	37.49%

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For 13 instances, the separation is exact.

We have a result for 55/62 instances (4 numerical, 3 memory).

	cuts	gc%
GMI	24.800	22.60%
All 2-row	72.382	37.49%

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For 13 instances, the separation is exact.

Heuristic selection of two-row models

Issue:

• $O(m^2)$ is already a large number of models

Hypothesis:

▶ Not all models are necessary to achieve good separation

Rationale:

- MIPLIB models are mostly sparse
- Multi-cuts from rows with no common support are linear combinations of the corresponding one-row cuts

Heuristic selection of two-row models

Issue:

• $O(m^2)$ is already a large number of models

Hypothesis:

Not all models are necessary to achieve good separation

Rationale:

- MIPLIB models are mostly sparse
- Multi-cuts from rows with no common support are linear combinations of the corresponding one-row cuts

Heuristic selection of two-row models

Issue:

• $O(m^2)$ is already a large number of models

Hypothesis:

Not all models are necessary to achieve good separation

Rationale:

- MIPLIB models are mostly sparse
- Multi-cuts from rows with no common support are linear combinations of the corresponding one-row cuts

Heuristic selection of two-row models: results

With an arbitrary limit of m two-row models, we have a result for 58/62 instances (1 numerical, 3 memory).

On the 55 common results,

For 25 instances, the separation is exact.

Heuristic selection of two-row models: results

With an arbitrary limit of m two-row models, we have a result for 58/62 instances (1 numerical, 3 memory).

On the 55 common results,

	cuts	gc%
GMI	24.800	22.60%
All 2-row	72.382	37.49%
Heuristic	57.418	35.19%

For 25 instances, the separation is exact.

Heuristic selection of two-row models: results

With an arbitrary limit of m two-row models, we have a result for 58/62 instances (1 numerical, 3 memory).

On the 55 common results,

	cuts	gc%
GMI	24.800	22.60%
All 2-row	72.382	37.49%
Heuristic	57.418	35.19%

For 25 instances, the separation is exact.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

◆□ > ◆□ > ◆臣 > ◆臣 > ○ ● ● ● ●

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

	basic		non	basic
	$\in \mathbb{Z}$	bnd.	$\in \mathbb{Z}$	bnd.
P_I		×	×	В
full 2-row				\sim

<ロ> <@> < E> < E> E のQの

	basic		non	basic
	$\in \mathbb{Z}$	bnd.	$\in \mathbb{Z}$	bnd.
PI		×	×	В
full 2-row		\sim		\sim

<ロ> <@> < E> < E> E のQの

	basic		no	onbasic
	$\in \mathbb{Z}$	bnd.	$\in \mathbb{Z}$	ℤ bnd.
P _I		×	Х	В
S-free		\checkmark	×	В
full 2-row				

<ロ> <@> < E> < E> E のQの

	basic			nonbasic	
	$\in \mathbb{Z}$	bnd.	-	$\in \mathbb{Z}$	bnd.
P _I		×		×	В
S-free				×	В
lifting		\times			В
P_{IU}					\sim
full 2-row					$\overline{\mathbf{v}}$

(ロ)、(型)、(E)、(E)、(E)、(O)()

	basic			non	basic
	$\in \mathbb{Z}$	bnd.	-	$\in \mathbb{Z}$	bnd.
P _I		×		Х	В
S-free		\checkmark		×	В
lifting		×			В
PIU		\times		×	
full 2-row		\sim		$\overline{\mathbf{v}}$	\sim

(ロ)、(型)、(E)、(E)、(E)、(O)()

	basic		nor	nonbasic	
	$\in \mathbb{Z}$	bnd.	$\in \mathbb{Z}$	bnd.	
P _I		×	×	В	
S-free	\checkmark		×	В	
lifting		\times		В	
P _{IU}		\times	×	\checkmark	
full 2-row					

(ロ)、(型)、(E)、(E)、(E)、(O)()

51 common instances:

	cuts	gc%	exact
GMI	28.240	22.46%	all
P _I	29.420	27.65%	42
<i>S</i> -free	38.380	30.22%	29
lifting	22.700	27.35%	10
P _{IU}	42.640	28.56%	25
full 2-row	55.500	35.66%	22

51 common instances:

	cuts	gc%	exact
GMI	28.240	22.46%	all
P _I	29.420	27.65%	42
S-free	38.380	30.22%	29
lifting	22.700	27.35%	10
P _{IU}	42.640	28.56%	25
full 2-row	55.500	35.66%	22

51 common instances:

	cuts	gc%	exact
GMI	28.240	22.46%	all
P _I	29.420	27.65%	42
<i>S</i> -free	38.380	30.22%	29
lifting	22.700	27.35%	10
PIU	42.640	28.56%	25
full 2-row	55.500	35.66%	22

51 common instances:

	cuts	gç⁰∕o	exact
GMI	28.240	22 5%	all
P _I	25 120	.65%	42
S-free	38.3	30.22%	29
lifting	227,0	27.35%	10
PIU		2 56%	25
full 2-row	55.500	35.6	22
Two-row intersection cuts and strengthenings

15 common instances:

	cuts	gc%	exact
GMI	20.667	26.541	all
P _I	20.933	33.535	all
S-free	25.400	35.229	all
PIU	36.600	36.257	all
full 2-row	57.267	43.956	all

Two-row intersection cuts and strengthenings

7 common instances:

[bell5, blend2, egout, khb05250, misc03, misc07, set1ch]

	cuts	gc%	exact
GMI	25.571	24.744	all
P _I	25.143	33.641	all
S-free	28.714	33.836	all
lifting	25.571	33.716	all
PIU	47.857	37.531	all
full 2-row	48.000	37.583	all

We depend on the optimal basis

▶ Will the gap closed by two-row cuts survive more GMIs?

We depend on the optimal basis

Will the gap closed by two-row cuts survive more GMIs?

- We depend on the optimal basis
- Will the gap closed by two-row cuts survive more GMIs?

Relax and cut

- Convenient way to explore different (feasible) bases.
- Now trying to separate a point with a much stronger LP bound (obtained by adding GMIs).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Relax and cut

Convenient way to explore different (feasible) bases.

Now trying to separate a point with a much stronger LP bound (obtained by adding GMIs).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Relax and cut

- Convenient way to explore different (feasible) bases.
- Now trying to separate a point with a much stronger LP bound (obtained by adding GMIs).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Relax and cut: results

43 common instances:

	cuts	gc%	exact
GMI	24.814	23.282	all
2-row i.c.	31.884	28.838	42
full 2-row	62.140	36.080	22
relax&cut GMI	60.372	34.970	all
relax&cut 2-row i.c.	63.163	41.951	37
relax&cut full 2-row	76.767	47.277	12

Future

More rows

More tricks

More tests

More rows

More tricks

More tests

More rows

More tricks

More tests

More rows

More tricks

More tests

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <