## Multi-row approaches to cutting plane generation

Laurent Poirrier

Montefiore Institute, ULg

Tuesday, December 18th, 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

# Example: The university is hiring

|          | Junior             | Senior   |
|----------|--------------------|----------|
| Teaching | 40 hours           | 80 hours |
| Pay      | \$ 31              | \$ 45    |
| Hire     | at least one third |          |

Have as many taught hours as possible, with a budget of \$ 239.



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# Example: The university is hiring

|          | Junior             | Senior   |
|----------|--------------------|----------|
| Teaching | 40 hours           | 80 hours |
| Pay      | \$ 31              | \$45     |
| Hire     | at least one third |          |

Have as many taught hours as possible, with a budget of \$ 239.

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ ・ の < @



・ロト・4回ト・4回ト・4回ト・4回ト





◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●



▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のんの



▲□▶ ▲□▶ ▲目▶ ▲目▶

æ



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで



# Applications

- Scheduling (timetable building, machine tool switching, ...)
- Bin-packing (chipset floor planning, ...)
- Traveling Salesman Problem (ICs soldering and drilling)
- ▶ Discrete flow problems (power and energy distribution, ...)
- Assignment
- Lot-sizing

...

Transportation problems

Most are NP-hard, and computationally difficult to solve.

# Applications

- Scheduling (timetable building, machine tool switching, ...)
- Bin-packing (chipset floor planning, ...)
- Traveling Salesman Problem (ICs soldering and drilling)
- Discrete flow problems (power and energy distribution, ...)
- Assignment
- Lot-sizing
- Transportation problems

▶ ....

Most are NP-hard, and computationally difficult to solve.

A Mixed Integer linear Programming problem



イロト イポト イヨト イヨト

э





◆□> ◆□> ◆豆> ◆豆> ・豆 ・のへで

(MIP1) min 
$$c^T x$$
  
(MIP1) s.t.  $A x \ge b$   
 $x_i \le \lfloor x_i^* \rfloor$   
 $x_j \in \mathbb{Z}$ , for  $j \in J$   
(MIP2) s.t.  $A x \ge b$   
 $x_i \ge \lceil x_i^* \rceil$   
 $x_j \in \mathbb{Z}$ , for  $j \in J$ 



# Cuts / Valid inequalities



▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ \_ 圖 \_ 釣�?

# Cuts / Valid inequalities



æ

# Why cut?

#### Most often,

|                | no cuts | $\leftrightarrow$ | more cuts |
|----------------|---------|-------------------|-----------|
| computing cuts | 0       |                   | more time |
| each b&b node  | faster  |                   | slower    |
| b&b nodes      | more    |                   | less      |

In practice,

disabling cuts ightarrow 54 imes slower

# Why cut?

#### Most often,

|                | no cuts | $\leftrightarrow$ | more cuts |
|----------------|---------|-------------------|-----------|
| computing cuts | 0       |                   | more time |
| each b&b node  | faster  |                   | slower    |
| b&b nodes      | more    |                   | less      |

In practice,

disabling cuts ightarrow 54 imes slower

# Why cut?

#### Most often,

|                | no cuts | $\leftrightarrow$ | more cuts |
|----------------|---------|-------------------|-----------|
| computing cuts | 0       |                   | more time |
| each b&b node  | faster  |                   | slower    |
| b&b nodes      | more    |                   | less      |

In practice,

disabling cuts  $\rightarrow 54\times$  slower

(geometric mean over 719 instances [Bixby, Rothberg, 2007]).

Let  $x \in \mathbb{Z}^3_+$ ,

 $3x_1 + 4x_2 - 5x_3 \le 4.5$ 

 $\downarrow \\ 3x_1 + 4x_2 - 5x_3 \le 4$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let  $x \in \mathbb{Z}^3_+$ ,

$$3x_1 + 4x_2 - 5x_3 \le 4.5$$

 $\downarrow \\ 3x_1 + 4x_2 - 5x_3 \le 4$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let  $x \in \mathbb{Z}^3_+$ ,  $3.4x_1 + 4.2x_2 - 4.6x_3 < 4.5$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Chvatál-Gomory cut

$$3x_1 + 4x_2 - 5x_3 \le 4$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Chvatál-Gomory cut

Let  $x \in \mathbb{Z}^3_+$ ,  $3.4 x_1 + 4.2 x_2 - 4.6 x_3 < 4.5$ ↓  $3x_1 + 4x_2 - 5x_3 \le 4.5$ ∜  $3x_1 + 4x_2 - 5x_3 < 4$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Chvatál-Gomory cut

### What cuts?

| Disabled cut           | Performance degradation |
|------------------------|-------------------------|
| Gomory mixed-integer   | 2.52 ×                  |
| Mixed-integer rounding | 1.83 ×                  |
| Knapsack cover         | 1.40 ×                  |
| Flow cover             | 1.22 ×                  |
| Implied bound          | 1.19 ×                  |
| Flow path              | 1.04 ×                  |
| Clique                 | 1.02 ×                  |
| GUB cover              | 1.02 ×                  |

(geometric mean over 106 medium-sized instances [Bixby, Rothberg, 2007]).  $\mathbb{R}$ 

# A. TWO-ROW CUTS

<□ > < @ > < E > < E > E のQ @

# A.1. Background

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

### Single-row cuts

From one (re)formulation of the problem

(MIP) min 
$$\overline{c}^T x$$
  
(MIP) s.t.  $\overline{A} x \ge \overline{b}$   
 $x_J \in \mathbb{Z}$ 

we extract **one** constraint  $\overline{A}_i x \geq \overline{b}_i$ .

Knowing that x<sub>j</sub> ∈ Z, we construct a stronger inequality.
 In some cases, the cut can *separate* a specific point x<sup>\*</sup>.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

### Single-row cuts

From one (re)formulation of the problem

$$(\mathsf{MIP}) \begin{array}{l} \min & \overline{c}^T x \\ \text{s.t.} & \overline{A} x \ge \overline{b} \\ & x_J \in \mathbb{Z} \end{array}$$

we extract **one** constraint  $\overline{A}_i x \geq \overline{b}_i$ .

▶ Knowing that x<sub>j</sub> ∈ Z, we construct a stronger inequality.
 ▶ In some cases, the cut can *separate* a specific point x<sup>\*</sup>.

### Single-row cuts

From one (re)formulation of the problem

$$(\mathsf{MIP}) \begin{array}{l} \min & \overline{c}^T x \\ \text{s.t.} & \overline{A} x \ge \overline{b} \\ & x_J \in \mathbb{Z} \end{array}$$

we extract **one** constraint  $\overline{A}_i x \geq \overline{b}_i$ .

- Knowing that  $x_j \in \mathbb{Z}$ , we construct a stronger inequality.
- In some cases, the cut can *separate* a specific point  $x^*$ .

### Two-row cuts

#### From one (re)formulation of the problem

(MIP) 
$$\begin{array}{ll} \min & \overline{c}^T x \\ \text{s.t.} & \overline{A} x = \overline{b} \\ & x \ge 0 \\ & x_J \in \mathbb{Z} \end{array}$$

we extract two constraints

$$\begin{array}{rcl} x_1 &+ \sum_j \overline{a}_{1j} s_j &= f_1 \\ &+ x_2 + \sum_j \overline{a}_{2j} s_j &= f_2 \end{array}, \qquad \begin{array}{rcl} x_1, x_2 \in \mathbb{Z} \\ &s_j \in \mathbb{R}_+ \end{array}$$

As a vector equation,

$$(P_I) x = f + \sum_j r^j s_j, x \in \mathbb{Z}^2 s \in \mathbb{R}^n_+$$

In case (MIP) describes a simplex tableau,  $(x_{LP}^*, s_{LP}^*) = (f, 0)$ .
#### Two-row cuts

From one (re)formulation of the problem

(MIP) 
$$\begin{array}{ll} \min & \overline{c}^T x \\ \text{s.t.} & \overline{A} \, x = \overline{b} \\ & x \geq 0 \\ & x_J \in \mathbb{Z} \end{array}$$

we extract two constraints

$$\begin{array}{rcl} x_1 & + \sum_j \overline{a}_{1j} s_j &= f_1 \\ & + x_2 + \sum_j \overline{a}_{2j} s_j &= f_2 \end{array}, \qquad \begin{array}{rcl} x_1, x_2 \in \mathbb{Z} \\ & s_j \in \mathbb{R}_+ \end{array}$$

As a vector equation,

$$(P_I) x = f + \sum_j r^j s_j, x \in \mathbb{R}^n_+$$

In case (MIP) describes a simplex tableau,  $(x_{LP}^*, s_{LP}^*) = (f, 0)$ .

#### Two-row cuts

From one (re)formulation of the problem

(MIP) 
$$\begin{array}{ll} \min & \overline{c}^T x \\ \text{s.t.} & \overline{A} x = \overline{b} \\ & x \ge 0 \\ & x_J \in \mathbb{Z} \end{array}$$

we extract two constraints

$$\begin{array}{rcl} x_1 &+ \sum_j \overline{a}_{1j} s_j &= f_1 \\ &+ x_2 + \sum_j \overline{a}_{2j} s_j &= f_2 \end{array}, \qquad \begin{array}{rcl} x_1, x_2 \in \mathbb{Z} \\ &s_j \in \mathbb{R}_+ \end{array}$$

As a vector equation,

$$(P_I) x = f + \sum_j r^j s_j, x \in \mathbb{Z}^2 s \in \mathbb{R}^n_+$$

In case (MIP) describes a simplex tableau,  $(x_{LP}^*, s_{LP}^*) = (f, 0)$ .

#### Two-row cuts

From one (re)formulation of the problem

(MIP) 
$$\begin{array}{ll} \min & \overline{c}^T x \\ \text{s.t.} & \overline{A} \, x = \overline{b} \\ & x \geq 0 \\ & x_J \in \mathbb{Z} \end{array}$$

we extract two constraints

$$\begin{array}{rcl} x_1 &+ \sum_j \overline{a}_{1j} s_j &= f_1 \\ &+ x_2 + \sum_j \overline{a}_{2j} s_j &= f_2 \end{array}, \qquad \begin{array}{rcl} x_1, x_2 \in \mathbb{Z} \\ &s_j \in \mathbb{R}_+ \end{array}$$

As a vector equation,

$$(P_I) x = f + \sum_j r^j s_j, x \in \mathbb{Z}^2 s \in \mathbb{R}^n_+$$

In case (MIP) describes a simplex tableau,  $(x_{LP}^*, s_{LP}^*) = (f, 0)$ .

## A.2. Problem statement

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで





$$\begin{array}{rcl} x & = & f + \sum_j r^j s_j \\ x & \in & \mathbb{Z}^2 \\ s_j & \geq & 0 \end{array}$$

An inequality of the form

 $\alpha_1 s_1 + \ldots + \alpha_n s_n \ge 1$ 

with  $\alpha_i \geq 0$ , cuts off

interior $(L_{\alpha})$ 

in the x space where  $v^i = f + \frac{1}{\alpha_i} r^i$ .



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

$$\begin{array}{rcl} x & = & f + \sum_j r^j s_j \\ x & \in & \mathbb{Z}^2 \\ s_j & \geq & 0 \end{array}$$

An inequality of the form

$$\alpha_1 s_1 + \ldots + \alpha_n s_n \ge 1$$

with  $\alpha_i \geq 0$ , cuts off

 $interior(L_{\alpha})$ 

in the x space where  $v^i = f + \frac{1}{\alpha_i}r^i$ .



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\begin{array}{rcl} x & = & f + \sum_j r^j s_j \\ x & \in & \mathbb{Z}^2 \\ s_j & \geq & 0 \end{array}$$

An inequality of the form

$$\alpha_1 s_1 + \ldots + \alpha_n s_n \ge 1$$

with  $\alpha_i \geq 0$ , cuts off

interior $(L_{\alpha})$ 

in the x space where  $v^i = f + \frac{1}{\alpha_i} r^i$ .



◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

## Validity: The linear programming intuition

Given  $\overline{x} \in \mathbb{Z}^2$ , we want that  $\forall s \in \mathbb{R}^n_+ : \overline{x} = f + Rs, \qquad \alpha_1 s_1 + \ldots + \alpha_n s_n \ge 1$ i.e. we want  $\min_{\alpha_1 s_1 + \ldots + \alpha_n s_n} \ge 1$ 

$$\begin{array}{ll} \min & \alpha_1 s_1 + \ldots + \alpha_n s_n & \geq 1 \\ \text{s.t.} & Rs &= \overline{x} - f \\ & s &\geq 0 \end{array}$$

therefore we need

 $\forall i, j, s_i^{\overline{x}}, s_j^{\overline{x}} : \overline{x} = f + s_i^{\overline{x}} r^i + s_j^{\overline{x}} r^j, \qquad s_i^{\overline{x}} \alpha_i + s_j^{\overline{x}} \alpha_j \ge 1.$ 

### Validity: The linear programming intuition

Given  $\overline{x} \in \mathbb{Z}^2$ , we want that  $\forall s \in \mathbb{R}^n_+ : \overline{x} = f + Rs, \qquad \alpha_1 s_1 + \ldots + \alpha_n s_n \geq 1$ i.e. we want

$$\begin{array}{ll} \min & \alpha_1 s_1 + \ldots + \alpha_n s_n & \geq 1 \\ \text{s.t.} & Rs &= \overline{x} - f \\ & s &\geq 0 \end{array}$$

therefore we need

 $\forall i, j, s_i^{\overline{x}}, s_j^{\overline{x}} : \overline{x} = f + s_i^{\overline{x}} r^i + s_j^{\overline{x}} r^j, \qquad s_i^{\overline{x}} \alpha_i + s_j^{\overline{x}} \alpha_j \ge 1.$ 

### Validity: The linear programming intuition

Given  $\overline{x} \in \mathbb{Z}^2$ , we want that  $\forall s \in \mathbb{R}^n_+ : \overline{x} = f + Rs, \qquad \alpha_1 s_1 + \ldots + \alpha_n s_n \ge 1$ i.e. we want

$$\begin{array}{ll} \min & \alpha_1 s_1 + \ldots + \alpha_n s_n & \geq 1 \\ \text{s.t.} & Rs &= \overline{x} - f \\ & s &\geq 0 \end{array}$$

therefore we need

$$\forall i, j, s_i^{\overline{x}}, s_j^{\overline{x}} : \overline{x} = f + s_i^{\overline{x}} r^i + s_j^{\overline{x}} r^j, \qquad s_i^{\overline{x}} \alpha_i + s_j^{\overline{x}} \alpha_j \ge 1.$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < @

0 0 0 Given  $\overline{x} \in \mathbb{Z}^2$ .  $v^2$ 0 0 for all  $i, j : \overline{x} \in f + \operatorname{cone}(r^i, r^j)$ ,  $s_i^{\overline{x}} \alpha_i + s_j^{\overline{x}} \alpha_j \ge 1,$ 0 with  $s_i^{\overline{x}}, s_j^{\overline{x}} : \overline{x} = f + s_i^{\overline{x}} r^i + s_j^{\overline{x}} r^j$ . 11 0  $\mathcal{X}_1$ 

0 0 0 Given  $\overline{x} \in \mathbb{Z}^2$ .  $v^2$ 0 0 for all  $i, j : \overline{x} \in f + \operatorname{cone}(r^i, r^j)$ ,  $s_i^{\overline{x}} \alpha_i + s_j^{\overline{x}} \alpha_j \ge 1,$ 0 with  $s_i^{\overline{x}}, s_j^{\overline{x}} : \overline{x} = f + s_i^{\overline{x}} r^i + s_j^{\overline{x}} r^j$ . ,5  $r^5$ 0  $x_1$ 

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへ(?)

0 0 0 Given  $\overline{x} \in \mathbb{Z}^2$ .  $v^1$ ,  $r^1$ 0 0 for all  $i, j : \overline{x} \in f + \operatorname{cone}(r^i, r^j)$ ,  $s_i^{\overline{x}} \alpha_i + s_j^{\overline{x}} \alpha_j \ge 1,$ 0 with  $s_i^{\overline{x}}, s_j^{\overline{x}} : \overline{x} = f + s_i^{\overline{x}} r^i + s_j^{\overline{x}} r^j$ . 11 0  $\mathcal{X}_1$ 

0 0 0 Given  $\overline{x} \in \mathbb{Z}^2$ .  $v^1$ -  $r^1$ 0 0 for all  $i, j : \overline{x} \in f + \operatorname{cone}(r^i, r^j)$ ,  $s_i^{\overline{x}} \alpha_i + s_j^{\overline{x}} \alpha_j \ge 1,$ 0 with  $s_i^{\overline{x}}, s_j^{\overline{x}} : \overline{x} = f + s_i^{\overline{x}} r^i + s_j^{\overline{x}} r^j$ . ,5  $r^5$ 0  $x_1$ 

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)



#### Lattice-free sets – the intuition, for all x



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

#### Lattice-free sets - the intuition, for every cone



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

### Lattice-free sets – the set $\mathcal{X}_{ij}$

0 0 0 For all i, j, 0 for all  $x \in \mathcal{X}_{ij}$ ,  $s_i^x \alpha_i + s_j^x \alpha_j \ge 1,$  $x_2$ with  $s_{i}^{x}, s_{j}^{x} : x = f + s_{i}^{x}r^{i} + s_{i}^{x}r^{j}$ . • we can restrict  $x \in \mathbb{Z}^2$  to  $\mathcal{X}_1$  $x \in \mathcal{X}_{ij}$  where  $\mathcal{X}_{ij}$  is the set of the vertices of  $\mathbb{Z}^2 \cap (f + \operatorname{conv}(r^i, r^j)).$ 

## Polarity

Let  $P \subseteq \mathbb{R}^N$  be a radial polyhedron and  $Q \subseteq \mathbb{R}^N$  its polar. There is a correspondance between

 $\begin{array}{lll} \text{Extreme point } \overline{x} \in P & \text{and} & \text{Facet of } Q \text{: } \overline{x}^T a \geq 1 \\ \text{Extreme ray } \overline{x} \in P & \text{and} & \text{Facet of } Q \text{: } \overline{x}^T a \geq 0 \end{array}$ 

Facet of  $P: \overline{a}^T x \ge 1$  and Extreme point  $\overline{a} \in Q$ Facet of  $P: \overline{a}^T x \ge 0$  and Extreme ray  $\overline{a} \in Q$ 

► We have a polyhedron  $\operatorname{conv}(P_I) = \operatorname{conv}\left(\left\{(x,s) \in \mathbb{Z}^2 \times \mathbb{R}^n_+ \mid x = f + \sum_j r^j s_j\right\}\right).$ 

•  $\operatorname{conv}(P_I) \subseteq \mathbb{R}^{2+n}$  is of dimensionality n.

• We know the extreme points and rays of  $conv(P_I)$ .

• We can build the polar  $Q \subseteq \mathbb{R}^n$  of  $\operatorname{conv}(P_I)$ .

• We can optimize over Q to find facets  $\operatorname{conv}(P_I)$ .

| Extreme point $\overline{x} \in \operatorname{conv}(P_I)$           | Facet of $Q: \overline{x}^T \alpha \ge 1$ |
|---------------------------------------------------------------------|-------------------------------------------|
| Extreme ray $\overline{x} \in \operatorname{conv}(P_I)$             | Facet of $Q: \overline{x}^T \alpha \ge 0$ |
|                                                                     |                                           |
| Facet of $\operatorname{conv}(P_I)$ : $\overline{\alpha}^T x \ge 1$ | Extreme point $\overline{\alpha} \in Q$   |
| Facet of $\operatorname{conv}(P_I)$ : $\overline{\alpha}^T x \ge 0$ | Extreme ray $\overline{\alpha} \in Q$     |

► We have a polyhedron  $\operatorname{conv}(P_I) = \operatorname{conv}\left(\left\{(x,s) \in \mathbb{Z}^2 \times \mathbb{R}^n_+ \mid x = f + \sum_j r^j s_j\right\}\right).$ 

•  $\operatorname{conv}(P_I) \subseteq \mathbb{R}^{2+n}$  is of dimensionality n.

• We know the extreme points and rays of  $conv(P_I)$ .

• We can build the polar  $Q \subseteq \mathbb{R}^n$  of  $\operatorname{conv}(P_I)$ .

• We can optimize over Q to find facets  $\operatorname{conv}(P_I)$ .

| Extreme point $\overline{x} \in \operatorname{conv}(P_I)$           | Facet of $Q: \overline{x}^T \alpha \ge 1$ |
|---------------------------------------------------------------------|-------------------------------------------|
| Extreme ray $\overline{x} \in \operatorname{conv}(P_I)$             | Facet of $Q: \overline{x}^T \alpha \ge 0$ |
|                                                                     |                                           |
| Facet of $\operatorname{conv}(P_I)$ : $\overline{\alpha}^T x \ge 1$ | Extreme point $\overline{\alpha} \in Q$   |
| Facet of $\operatorname{conv}(P_I)$ : $\overline{\alpha}^T x \ge 0$ | Extreme ray $\overline{lpha} \in Q$       |

► We have a polyhedron  $\operatorname{conv}(P_I) = \operatorname{conv}\left(\left\{(x,s) \in \mathbb{Z}^2 \times \mathbb{R}^n_+ \mid x = f + \sum_j r^j s_j\right\}\right).$ 

•  $\operatorname{conv}(P_I) \subseteq \mathbb{R}^{2+n}$  is of dimensionality n.

- We know the extreme points and rays of  $conv(P_I)$ .
- We can build the polar  $Q \subseteq \mathbb{R}^n$  of  $\operatorname{conv}(P_I)$ .

• We can optimize over Q to find facets  $conv(P_I)$ .

 $\begin{array}{rcl} \text{Extreme point } \overline{x} \in \operatorname{conv}(P_I) & \longrightarrow & \text{Facet of } Q \colon \overline{x}^T \alpha \geq 1 \\ \text{Extreme ray } \overline{x} \in \operatorname{conv}(P_I) & \longrightarrow & \text{Facet of } Q \colon \overline{x}^T \alpha \geq 0 \end{array}$ 

► We have a polyhedron  $\operatorname{conv}(P_I) = \operatorname{conv}\left(\left\{(x,s) \in \mathbb{Z}^2 \times \mathbb{R}^n_+ \mid x = f + \sum_j r^j s_j\right\}\right).$ 

•  $\operatorname{conv}(P_I) \subseteq \mathbb{R}^{2+n}$  is of dimensionality n.

- We know the extreme points and rays of  $conv(P_I)$ .
- We can build the polar  $Q \subseteq \mathbb{R}^n$  of  $\operatorname{conv}(P_I)$ .
- We can optimize over Q to find facets  $conv(P_I)$ .

 $\begin{array}{lll} \text{Extreme point } \overline{x} \in \operatorname{conv}(P_I) & \longrightarrow & \text{Facet of } Q \text{: } \overline{x}^T \alpha \geq 1 \\ \text{Extreme ray } \overline{x} \in \operatorname{conv}(P_I) & \longrightarrow & \text{Facet of } Q \text{: } \overline{x}^T \alpha \geq 0 \end{array}$ 

Facet of 
$$\operatorname{conv}(P_I)$$
:  $\overline{\alpha}^T x \ge 1$   $\longrightarrow$  Extreme point  $\overline{\alpha} \in Q$   
Facet of  $\operatorname{conv}(P_I)$ :  $\overline{\alpha}^T x \ge 0$   $\longrightarrow$  Extreme ray  $\overline{\alpha} \in Q$ 

• We have a polyhedron  $\operatorname{conv}(P_I) = \operatorname{conv}\left(\left\{(x,s) \in \mathbb{Z}^2 \times \mathbb{R}^n_+ \mid x = f + \sum_j r^j s_j\right\}\right).$ 

•  $\operatorname{conv}(P_I) \subseteq \mathbb{R}^{2+n}$  is of dimensionality n.

- We know the extreme points and rays of  $conv(P_I)$ .
- We can build the polar  $Q \subseteq \mathbb{R}^n$  of  $\operatorname{conv}(P_I)$ .
- We can optimize over Q to find facets  $conv(P_I)$ .

 $\begin{array}{rcl} \text{Extreme point } \overline{x} \in \operatorname{conv}(P_I) & \longrightarrow & \text{Facet of } Q \text{: } \overline{x}^T \alpha \geq 1 \\ \text{Extreme ray } \overline{x} \in \operatorname{conv}(P_I) & \longrightarrow & \text{Facet of } Q \text{: } \overline{x}^T \alpha \geq 0 \end{array}$ 

Facet of 
$$\operatorname{conv}(P_I)$$
:  $\overline{\alpha}^T x \ge 1 \quad \longleftarrow \quad \text{Extreme point } \overline{\alpha} \in Q$   
Facet of  $\operatorname{conv}(P_I)$ :  $\overline{\alpha}^T x \ge 0 \quad \longleftarrow \quad \text{Extreme ray } \overline{\alpha} \in Q$ 

## Finding facets of $\operatorname{conv} P_I$

The polar of  $conv(P_I)$  is

$$Q = \{ \alpha \in \mathbb{R}^n_+ \mid \forall i, j, \ \forall x \in \mathcal{X}_{ij}, \ s^x_i \alpha_i + s^x_j \alpha_j \ge 1 \}.$$

We find facets of  $\operatorname{conv}(P_I)$  by choosing an objective function  $c^T \alpha$ and optimizing over Q:

$$\begin{array}{ll} \min & c^T \alpha \\ \text{s.t.} & s_i^x \alpha_i + s_j^x \alpha_j \geq 1, \quad \forall i, j, \; \forall x \in \mathcal{X}_{ij} \\ & \alpha \geq 0 \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

## Finding facets of $\operatorname{conv} P_I$

The polar of  $conv(P_I)$  is

$$Q = \{ \alpha \in \mathbb{R}^n_+ \mid \forall i, j, \ \forall x \in \mathcal{X}_{ij}, \ s^x_i \alpha_i + s^x_j \alpha_j \ge 1 \}.$$

We find facets of  $conv(P_I)$  by choosing an objective function  $c^T \alpha$  and optimizing over Q:

$$\begin{array}{ll} \min & c^T \alpha \\ \text{s.t.} & s_i^x \alpha_i + s_j^x \alpha_j \geq 1, \quad \forall i, j, \; \forall x \in \mathcal{X}_{ij} \\ & \alpha \geq 0 \end{array}$$

## A.3. New developments

- ▶ For each cone, compute integer hull.
- For each vertex, write one constraint.
- 1. Cones: quadratic in the number of rays.
- 2. Vertices: polynomial (but possibly large) number in each cone.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

#### ► For each cone, compute integer hull.

- For each vertex, write one constraint.
- 1. Cones: quadratic in the number of rays.
- 2. Vertices: polynomial (but possibly large) number in each cone.

- ► For each cone, compute integer hull.
- For each vertex, write one constraint.
- 1. Cones: quadratic in the number of rays.
- 2. Vertices: polynomial (but possibly large) number in each cone.

- ▶ For each cone, compute integer hull.
- For each vertex, write one constraint.
- 1. Cones: quadratic in the number of rays.
- 2. Vertices: polynomial (but possibly large) number in each cone.

- ▶ For each cone, compute integer hull.
- For each vertex, write one constraint.
- 1. Cones: quadratic in the number of rays.
- 2. Vertices: polynomial (but possibly large) number in each cone.

The complexity of the polar – the intuition



▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへ(?)


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

$$\begin{split} Q &= \left\{ \begin{array}{c} \alpha \in \mathbb{R}^{n}_{+} \mid \forall i, j, \forall x \in \mathcal{X}_{ij}, \\ s_{i}^{x} \alpha_{i} + s_{j}^{x} \alpha_{j} \geq 1 \end{array} \right\} & \circ & \circ & \circ & r^{2} \circ \\ Q' &= \left\{ \begin{array}{c} \alpha \in \mathbb{R}^{n}_{+} \mid \forall i, \forall x \in \mathcal{X}_{i,i+1}, \\ s_{i}^{x} \alpha_{i} + s_{i+1}^{x} \alpha_{i+1} \geq 1 \end{array} \right\} & & & & & \\ \overline{Q} &= \left\{ \begin{array}{c} \alpha \in \mathbb{R}^{n}_{+} \mid \\ \forall i, \forall x \in \mathcal{X}_{i,i+1}, \\ s_{i}^{x} \alpha_{i} + s_{i+1}^{x} \alpha_{i+1} \geq 1 \\ \forall i: r^{i} \in \operatorname{cone}(r^{i-1}, r^{i+1}), \\ \alpha_{i} \leq \lambda_{i-1}^{i} \alpha_{i-1} + \lambda_{i+1}^{i} \alpha_{i+1} \end{array} \right\} & & & & \\ \end{array} \end{split}$$

Note:  $r^j = \lambda^j_i r^i + \lambda^j_k r^k$ 



Note:  $r^j = \lambda_i^j r^i + \lambda_k^j r^k$ 

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで



• What is  $Q \setminus \overline{Q}$ ?

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

$$Q = \{ \alpha \in \mathbb{R}^n_+ \mid \forall i, j, \forall x \in \mathcal{X}_{ij}, \quad s^x_i \alpha_i + s^x_j \alpha_j \ge 1 \}$$
  
$$\overline{Q} = \{ \alpha \in \mathbb{R}^n_+ \mid \\ \forall i, \forall x \in \mathcal{X}_{i,i+1}, \quad s^x_i \alpha_i + s^x_{i+1} \alpha_{i+1} \ge 1 \\ \forall i: r^i \in \operatorname{cone}(r^{i-1}, r^{i+1}), \quad \alpha_i \le \lambda^i_{i-1} \alpha_{i-1} + \lambda^i_{i+1} \alpha_{i+1} \}.$$

#### Theorem

 $\overline{Q} \subseteq Q$ , and all vertices of Q are in  $\overline{Q}$ .

#### Corollary

If c > 0,  $\min_{s.t.} c^T \alpha$  and  $\min_{s.t.} c^T \alpha$  share the same set of optimal solutions. If  $c_i < 0$ , then  $\min_{s.t.} c^T \alpha$  is unbounded.

$$Q = \{ \alpha \in \mathbb{R}^n_+ \mid \forall i, j, \forall x \in \mathcal{X}_{ij}, \quad s^x_i \alpha_i + s^x_j \alpha_j \ge 1 \}$$
  
$$\overline{Q} = \{ \alpha \in \mathbb{R}^n_+ \mid \\ \forall i, \forall x \in \mathcal{X}_{i,i+1}, \quad s^x_i \alpha_i + s^x_{i+1} \alpha_{i+1} \ge 1 \\ \forall i: r^i \in \operatorname{cone}(r^{i-1}, r^{i+1}), \quad \alpha_i \le \lambda^i_{i-1} \alpha_{i-1} + \lambda^i_{i+1} \alpha_{i+1} \}.$$

#### Theorem

 $\overline{Q} \subseteq Q$ , and all vertices of Q are in  $\overline{Q}$ .

### Corollary

If c > 0,  $\min_{s.t.} c^T \alpha$  and  $\min_{s.t.} c^T \alpha$  share the same set of optimal solutions. If  $c_i < 0$ , then  $\min_{s.t.} c^T \alpha$  is unbounded.

$$\begin{aligned} Q &= \{ \alpha \in \mathbb{R}^n_+ \mid \forall i, j, \ \forall x \in \mathcal{X}_{ij}, \qquad s^x_i \alpha_i + s^x_j \alpha_j \ge 1 \} \\ \overline{Q} &= \{ \alpha \in \mathbb{R}^n_+ \mid \\ &\forall i, \ \forall x \in \mathcal{X}_{i,i+1}, \qquad s^x_i \alpha_i + s^x_{i+1} \alpha_{i+1} \ge 1 \\ &\forall i: \ r^i \in \operatorname{cone}(r^{i-1}, r^{i+1}), \quad \alpha_i \le \lambda^i_{i-1} \alpha_{i-1} + \lambda^i_{i+1} \alpha_{i+1} \}. \end{aligned}$$

#### Theorem

 $\overline{Q} \subseteq Q$ , and all vertices of Q are in  $\overline{Q}$ .

### Corollary

 $\begin{array}{ll} \textit{If } c > 0, & \displaystyle \min_{s.t.} & c^{T} \alpha \\ \text{s.t.} & \alpha \in Q \end{array} \textit{ and } & \displaystyle \min_{s.t.} & c^{T} \alpha \\ \text{s.t.} & \alpha \in \overline{Q} \end{array} \textit{ share the same set of } \\ \textit{optimal solutions.} \\ \textit{If } c_{i} < 0, \textit{ then } & \displaystyle \min_{s.t.} & c^{T} \alpha \\ \text{s.t. } & \alpha \in O \end{array} \textit{ is unbounded.}$ 

$$Q = \{ \alpha \in \mathbb{R}^n_+ \mid \forall i, j, \forall x \in \mathcal{X}_{ij}, \quad s^x_i \alpha_i + s^x_j \alpha_j \ge 1 \}$$
  
$$\overline{Q} = \{ \alpha \in \mathbb{R}^n_+ \mid \\ \forall i, \forall x \in \mathcal{X}_{i,i+1}, \quad s^x_i \alpha_i + s^x_{i+1} \alpha_{i+1} \ge 1 \\ \forall i: r^i \in \operatorname{cone}(r^{i-1}, r^{i+1}), \quad \alpha_i \le \lambda^i_{i-1} \alpha_{i-1} + \lambda^i_{i+1} \alpha_{i+1} \}.$$

#### Theorem

 $\overline{Q} \subseteq Q$ , and all vertices of Q are in  $\overline{Q}$ .

#### Corollary

If c > 0,  $\begin{array}{c} \min & c^T \alpha \\ \text{s.t.} & \alpha \in Q \end{array}$  and  $\begin{array}{c} \min & c^T \alpha \\ \text{s.t.} & \alpha \in \overline{Q} \end{array}$  share the same set of optimal solutions. If  $c_i < 0$ , then  $\begin{array}{c} \min & c^T \alpha \\ \text{s.t.} & \alpha \in Q \end{array}$  is unbounded.

# Complexity of writing the polar (2)

- ► For each cone, compute integer hull.
- For each vertex, write one constraint.
- 1. Cones: guadratic linear in the number of rays.
- 2. Vertices: polynomial (but possibly large) number in each cone.
- 3. In practice, generate the constraints of Q by row generation.

# Complexity of writing the polar (2)

- ► For each cone, compute integer hull.
- For each vertex, write one constraint.
- 1. Cones: guadratic linear in the number of rays.
- 2. Vertices: polynomial (but possibly large) number in each cone.
- 3. In practice, generate the constraints of  $\overline{Q}$  by row generation.

## A.4. Results

## Computational results

|             | Average | Average   |
|-------------|---------|-----------|
|             | iter.   | time (ms) |
|             | per cut | per cut   |
| MIPLIB 3    | 3.1     | 1.8 ms    |
| MIPLIB 2003 | 15.6    | 24.3 ms   |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

## Computational results

|             | Average | Average   |
|-------------|---------|-----------|
|             | iter.   | time (ms) |
|             | per cut | per cut   |
| MIPLIB 3    | 3.1     | 1.8 ms    |
| MIPLIB 2003 | 15.6    | 24.3 ms   |

|             | one-      | row     | two-row ( |         | two-      | row     |
|-------------|-----------|---------|-----------|---------|-----------|---------|
|             | Average   | Average | Average   | Average | Average   | Average |
|             | sep. cuts | %gc     | sep. cuts | %gc     | sep. cuts | %gc     |
| MIPLIB 3    | 695.0     | 29.4 %  | 39.7      | 34.8 %  | 232.7     | 36.2 %  |
| MIPLIB 2003 | 4465.3    | 31.3 %  | 465.5     |         | 600.7     | 34.5 %  |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

## Computational results

|             | Average | Average   |
|-------------|---------|-----------|
|             | iter.   | time (ms) |
|             | per cut | per cut   |
| MIPLIB 3    | 3.1     | 1.8 ms    |
| MIPLIB 2003 | 15.6    | 24.3 ms   |

|             | one-      | row     | two-row (s | split sets) | two-      | row     |
|-------------|-----------|---------|------------|-------------|-----------|---------|
|             | Average   | Average | Average    | Average     | Average   | Average |
|             | sep. cuts | %gc     | sep. cuts  | %gc         | sep. cuts | %gc     |
| MIPLIB 3    | 695.0     | 29.4 %  | 39.7       | 34.8 %      | 232.7     | 36.2 %  |
| MIPLIB 2003 | 4465.3    | 31.3 %  | 465.5      | 33.0 %      | 600.7     | 34.5 %  |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

#### • We have a fast separation for two-row cuts.

- These cuts are the strongest for the two-row model.
- ▶ They close more gap than one-row (intersection) cuts.

But

they do not close much more gap than two-row intersection cuts from split sets.

- We have a fast separation for two-row cuts.
- These cuts are the strongest for the two-row model.
- ▶ They close more gap than one-row (intersection) cuts.

But

they do not close much more gap than two-row intersection cuts from split sets.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- We have a fast separation for two-row cuts.
- These cuts are the strongest for the two-row model.
- ► They close more gap than one-row (intersection) cuts.

But

they do not close much more gap than two-row intersection cuts from split sets.

- We have a fast separation for two-row cuts.
- These cuts are the strongest for the two-row model.
- ► They close more gap than one-row (intersection) cuts.

### But

they do not close much more gap than two-row intersection cuts from split sets.

### B. SEPARATION OVER ARBITRARY MIXED-INTEGER SETS

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

## Motivations

We want to test stronger relaxations

(ロ)、(型)、(E)、(E)、 E) の(の)

We still want exact separation

# B.1. Separation method

<□ > < @ > < E > < E > E のQ @

## Problem

Given

• a relaxation P of mixed-integer set in  $\mathbb{R}^n$ ,

▶ a point  $x^* \in \mathbb{R}^n$ ,

find  $(\alpha, \alpha_0) \in \mathbb{R}^{n+1}$  such that

 $\alpha^T x \ge \alpha_0$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is a valid inequality for P that separates  $x^*$ ,

or show that  $x^* \in \operatorname{conv}(P)$ .

## Problem

Given

- $\blacktriangleright$  a relaxation P of mixed-integer set in  $\mathbb{R}^n$ ,
- $\blacktriangleright$  a point  $x^* \in \mathbb{R}^n$ ,

find  $(\alpha, \alpha_0) \in \mathbb{R}^{n+1}$  such that

 $\alpha^T x \ge \alpha_0$ 

is a valid inequality for P that separates  $\boldsymbol{x}^*,$ 

or show that  $x^* \in \operatorname{conv}(P)$ .

### General framework

Solve the optimization problem

$$\begin{array}{ll} \min & x^{*T}\alpha \\ \text{s.t.} & x^T\alpha \ge \alpha_0 \quad \text{for all } x \in P \\ < \texttt{norm.} > \end{array} \tag{Sep. LP}$$

Let  $(\bar{\alpha}, \bar{\alpha}_0)$  be an optimal solution.

 $\begin{array}{ll} \text{If } x^{*T}\bar{\alpha}<\bar{\alpha}_0, \qquad \text{then } (\bar{\alpha},\bar{\alpha}_0) \text{ separates } x^*. \\ \text{If } x^{*T}\bar{\alpha}\geq\bar{\alpha}_0, \qquad \text{then } x^*\in \operatorname{conv}(P). \end{array}$ 

### General framework

Solve the optimization problem

$$\begin{array}{ll} \min & x^{*T}\alpha \\ \text{s.t.} & x^{T}\alpha \geq \alpha_{0} \quad \text{for all } x \in P \\ & < \mathsf{norm.} > \end{array} \tag{Sep. LP}$$

Let  $(\bar{\alpha}, \bar{\alpha}_0)$  be an optimal solution.

 $\begin{array}{ll} \text{If } x^{*T}\bar{\alpha}<\bar{\alpha}_0, \qquad \text{then } (\bar{\alpha},\bar{\alpha}_0) \text{ separates } x^*. \\ \text{If } x^{*T}\bar{\alpha}\geq\bar{\alpha}_0, \qquad \text{then } x^*\in \operatorname{conv}(P). \end{array}$ 

## Row generation

1. Consider the relaxation of the separation problem

$$\begin{array}{ll} \min & x^{*T}\alpha \\ \text{s.t.} & x^{T}\alpha \geq \alpha_{0} \quad \text{for all } x \in S \subseteq P \\ < \texttt{norm.} > \end{array} \tag{master}$$

Let  $(\bar{\alpha}, \bar{\alpha}_0)$  be an optimal solution.

2. Now solve the MIP

$$\begin{array}{ll} \min & \bar{\alpha}^T x \\ \text{s.t.} & x \subseteq P \end{array}$$
 (slave)

and let  $x^p$  be a finite optimal solution.

If  $\bar{\alpha}^T x^p \ge \bar{\alpha}_0$ , then  $(\bar{\alpha}, \bar{\alpha}_0)$  is valid for P. If  $\bar{\alpha}^T x^p < \bar{\alpha}_0$ , then  $S := S \cup \{x^p\}$ .

### Row generation

1. Consider the relaxation of the separation problem

$$\begin{array}{ll} \min & x^{*T}\alpha \\ \text{s.t.} & x^{T}\alpha \geq \alpha_{0} \quad \text{for all } x \in S \subseteq P \\ < \texttt{norm.} > \end{array} \tag{master}$$

Let  $(\bar{\alpha}, \bar{\alpha}_0)$  be an optimal solution.

2. Now solve the MIP

$$\begin{array}{ll} \min & \bar{\alpha}^T x \\ \text{s.t.} & x \subseteq P \end{array} \tag{slave}$$

and let  $x^p$  be a finite optimal solution.

If  $\bar{\alpha}^T x^p \ge \bar{\alpha}_0$ , then  $(\bar{\alpha}, \bar{\alpha}_0)$  is valid for P. If  $\bar{\alpha}^T x^p < \bar{\alpha}_0$ , then  $S := S \cup \{x^p\}$ .

### Row generation

1. Consider the relaxation of the separation problem

$$\begin{array}{ll} \min & x^{*T}\alpha \\ \text{s.t.} & x^{T}\alpha \geq \alpha_{0} \quad \text{for all } x \in S \subseteq P \\ < \texttt{norm.} > \end{array} \tag{master}$$

Let  $(\bar{\alpha}, \bar{\alpha}_0)$  be an optimal solution.

2. Now solve the MIP

$$\begin{array}{ll} \min & \bar{\alpha}^T x \\ \text{s.t.} & x \subseteq P \end{array} \tag{slave}$$

and let  $x^p$  be a finite optimal solution.

If 
$$\bar{\alpha}^T x^p \ge \bar{\alpha}_0$$
, then  $(\bar{\alpha}, \bar{\alpha}_0)$  is valid for  $P$ .  
If  $\bar{\alpha}^T x^p < \bar{\alpha}_0$ , then  $S := S \cup \{x^p\}$ .

## Computational example

| Instance:    | bell3a                                          |
|--------------|-------------------------------------------------|
| Constraints: | 123                                             |
| Variables:   | 133 (71 integer: 32 general, 39 binaries)       |
| Models:      | 82 five-row models read from an optimal tableau |

Cuts: 37 (17 tight at the end) Gap closed: 59.02% (from 39.03% by GMIs)

| Time:       | 1615.70s |
|-------------|----------|
| Iterations: | 107647   |

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

### Two-phases: Phase one



◆□ → ◆昼 → ◆臣 → ◆臣 → ◆□ →

### Two-phases: Phase one



### Two-phases: Phase two



 $\mathcal{O} \mathcal{O} \mathcal{O}$ 

# Computational example (2-phases)

(bell3a, 82 five-row models, 37 cuts, 59.02%gc)

|             | original | 2-phases |
|-------------|----------|----------|
| Time:       | 1615.70s | 161.15s  |
| Iterations: | 107647   | 23822    |

・ロト・日本・モート モー うへぐ

# Computational example (2-phases)

(bell3a, 82 five-row models, 37 cuts, 59.02%gc)

|             | original | 2-phases |
|-------------|----------|----------|
| Time:       | 1615.70s | 161.15s  |
| Iterations: | 107647   | 23822    |

# Lifting binary variables



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ
# Lifting binary variables



◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

# Lifting binary variables



◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Computational example (lifting binaries)

(bell3a, 82 five-row models, 37 cuts, 59.02%gc)

|             | original | 2-phases | lifting |
|-------------|----------|----------|---------|
| Time:       | 1615.70s | 161.15s  | 136.54s |
| Iterations: | 107647   | 23822    | 23231   |

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Computational example (lifting binaries)

(bell3a, 82 five-row models, 37 cuts, 59.02%gc)

|             | original | 2-phases | lifting |
|-------------|----------|----------|---------|
| Time:       | 1615.70s | 161.15s  | 136.54s |
| Iterations: | 107647   | 23822    | 23231   |

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ









◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 ○ のへで

Computational example (phase S)

(bell3a, 82 five-row models, 37 cuts, 59.02%gc)

|             | original | 2-phases | lifting | phase S |
|-------------|----------|----------|---------|---------|
| Time:       | 1615.70s | 161.15s  | 136.54s | 5.84s   |
| Iterations: | 107647   | 23822    | 23231   | 2497    |

Computational example (phase S)

(bell3a, 82 five-row models, 37 cuts, 59.02%gc)

|             | original | 2-phases | lifting | phase S |
|-------------|----------|----------|---------|---------|
| Time:       | 1615.70s | 161.15s  | 136.54s | 5.84s   |
| Iterations: | 107647   | 23822    | 23231   | 2497    |

Computational example (solver tricks)

(bell3a, 82 five-row models, 37 cuts, 59.02%gc)

|             | original | 2-phases | lifting | phase S | cb    |
|-------------|----------|----------|---------|---------|-------|
| Time:       | 1615.70s | 161.15s  | 136.54s | 5.84s   | 4.65s |
| Iterations: | 107647   | 23822    | 23231   | 2497    | 2497  |

・ロト・日本・モート モー うへぐ

Computational example (solver tricks)

(bell3a, 82 five-row models, 37 cuts, 59.02%gc)

|             | original | 2-phases | lifting | phase S | cb    |
|-------------|----------|----------|---------|---------|-------|
| Time:       | 1615.70s | 161.15s  | 136.54s | 5.84s   | 4.65s |
| Iterations: | 107647   | 23822    | 23231   | 2497    | 2497  |

・ロト・日本・モート モー うへぐ

Computational example (summary)

(bell3a, 82 five-row models, 37 cuts, 59.02%gc)

|             | original     | 2-phases | lifting     | phase S       | cb    |
|-------------|--------------|----------|-------------|---------------|-------|
|             | $347 \times$ | 35 	imes | $29 \times$ | $1.26 \times$ | 1     |
| Time:       | 1615.70s     | 161.15s  | 136.54s     | 5.84s         | 4.65s |
|             |              |          |             |               |       |
| Iterations: | 107647       | 23822    | 23231       | 2497          | 2497  |
|             | $43 \times$  | 10 	imes | $9 \times$  | 1             | 1     |

# B.2. Application to two-row relaxations

<□ > < @ > < E > < E > E のQ @

|            | basic            |      | non              | basic  |
|------------|------------------|------|------------------|--------|
|            | $\in \mathbb{Z}$ | bnd. | $\in \mathbb{Z}$ | bnd.   |
| $P_I$      |                  | ×    | ×                | В      |
|            |                  |      |                  |        |
|            |                  |      |                  |        |
|            |                  |      |                  |        |
| full 2-row | $\sim$           |      |                  | $\sim$ |

|            | basic            |        | non              | basic |
|------------|------------------|--------|------------------|-------|
|            | $\in \mathbb{Z}$ | bnd.   | $\in \mathbb{Z}$ | bnd.  |
| $P_I$      |                  | ×      | ×                | В     |
|            |                  |        |                  |       |
|            |                  |        |                  |       |
|            |                  |        |                  |       |
| full 2-row |                  | $\sim$ |                  |       |

|            | basic            |                         | n                 | nonbasic         |  |
|------------|------------------|-------------------------|-------------------|------------------|--|
|            | $\in \mathbb{Z}$ | bnd.                    | $\in \mathcal{I}$ | $\mathbb{Z}$ bnd |  |
| $P_I$      |                  | ×                       | ×                 | В                |  |
| S-free     |                  | $\checkmark$            | ×                 | В                |  |
|            |                  |                         |                   |                  |  |
|            |                  |                         |                   |                  |  |
| full 2-row |                  | $\overline{\mathbf{v}}$ |                   |                  |  |

|            | basic            |              |   | nonl             | basic  |
|------------|------------------|--------------|---|------------------|--------|
|            | $\in \mathbb{Z}$ | bnd.         | - | $\in \mathbb{Z}$ | bnd.   |
| $P_I$      |                  | ×            |   | ×                | В      |
| S-free     |                  | $\checkmark$ |   | ×                | В      |
| lifting    |                  | $\times$     |   |                  | В      |
| $P_{IU}$   |                  |              |   |                  | $\sim$ |
| full 2-row |                  |              |   |                  | $\sim$ |

|            | basic            |          | nonl | basic            |              |
|------------|------------------|----------|------|------------------|--------------|
|            | $\in \mathbb{Z}$ | bnd.     |      | $\in \mathbb{Z}$ | bnd.         |
| $P_I$      |                  | ×        |      | Х                | В            |
| S-free     |                  |          |      | ×                | В            |
| lifting    |                  | $\times$ |      |                  | В            |
| $P_{IU}$   |                  | $\times$ |      | ×                | $\checkmark$ |
| full 2-row |                  | $\sim$   |      |                  | $\sim$       |

|            | basic            |              | nonbasic |                  |              |
|------------|------------------|--------------|----------|------------------|--------------|
|            | $\in \mathbb{Z}$ | bnd.         |          | $\in \mathbb{Z}$ | bnd.         |
| $P_I$      |                  | ×            |          | ×                | В            |
| S-free     | $\checkmark$     | $\checkmark$ |          | ×                | В            |
| lifting    |                  | $\times$     |          |                  | В            |
| $P_{IU}$   |                  | $\times$     |          | ×                | $\checkmark$ |
| full 2-row |                  |              |          |                  |              |

#### 51 common instances:

|            | cuts   | gc%    | exact |
|------------|--------|--------|-------|
| GMI        | 28.240 | 22.46% | all   |
| $P_I$      | 29.420 | 27.65% | 42    |
| S-free     | 38.380 | 30.22% | 29    |
| lifting    | 22.700 | 27.35% | 10    |
| $P_{IU}$   | 42.640 | 28.56% | 25    |
| full 2-row | 55.500 | 35.66% | 22    |

#### 51 common instances:

|            | cuts   | gc%    | exact |
|------------|--------|--------|-------|
| GMI        | 28.240 | 22.46% | all   |
| $P_I$      | 29.420 | 27.65% | 42    |
| S-free     | 38.380 | 30.22% | 29    |
| lifting    | 22.700 | 27.35% | 10    |
| $P_{IU}$   | 42.640 | 28.56% | 25    |
| full 2-row | 55.500 | 35.66% | 22    |

#### 51 common instances:

|            | cuts   | gc%    | exact |
|------------|--------|--------|-------|
| GMI        | 28.240 | 22.46% | all   |
| $P_I$      | 29.420 | 27.65% | 42    |
| S-free     | 38.380 | 30.22% | 29    |
| lifting    | 22.700 | 27.35% | 10    |
| $P_{IU}$   | 42.640 | 28.56% | 25    |
| full 2-row | 55.500 | 35.66% | 22    |

#### 51 common instances:

|            | cuts   | gç⁰∕o  | exact |
|------------|--------|--------|-------|
| GMI        | 28.240 | 22 5%  | all   |
| $P_I$      | 25 120 | .65%   | 42    |
| S-free     | 38.3   | 30.22% | 29    |
| lifting    | 227,0  | 27.35% | 10    |
| $P_{IU}$   |        | 2 56%  | 25    |
| full 2-row | 55.500 | 35.6   | 22    |

#### 15 common instances:

|            | cuts   | gc%    | exact |
|------------|--------|--------|-------|
| GMI        | 20.667 | 26.541 | all   |
| $P_I$      | 20.933 | 33.535 | all   |
| S-free     | 25.400 | 35.229 | all   |
| $P_{IU}$   | 36.600 | 36.257 | all   |
| full 2-row | 57.267 | 43.956 | all   |

7 common instances:

[bell5, blend2, egout, khb05250, misc03, misc07, set1ch]

|            | cuts   | gc%    | exact |
|------------|--------|--------|-------|
| GMI        | 25.571 | 24.744 | all   |
| $P_I$      | 25.143 | 33.641 | all   |
| S-free     | 28.714 | 33.836 | all   |
| lifting    | 25.571 | 33.716 | all   |
| $P_{IU}$   | 47.857 | 37.531 | all   |
| full 2-row | 48.000 | 37.583 | all   |

- We depend on a specific optimal basis
- ▶ Will the gap closed by two-row cuts survive more GMIs?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

### We depend on a specific optimal basis

Will the gap closed by two-row cuts survive more GMIs?



- We depend on a specific optimal basis
- Will the gap closed by two-row cuts survive more GMIs?

## Relax and cut: results

### 43 common instances:

|                      | cuts   | gc%    | exact |
|----------------------|--------|--------|-------|
| GMI                  | 24.814 | 23.282 | all   |
| 2-row i.c.           | 31.884 | 28.838 | 42    |
| full 2-row           | 62.140 | 36.080 | 22    |
|                      |        |        |       |
| relax&cut GMI        | 60.372 | 34.970 | all   |
| relax&cut 2-row i.c. | 63.163 | 41.951 | 37    |
| relax&cut full 2-row | 76.767 | 47.277 | 12    |
|                      |        |        |       |

## More rows: Computing time



instances with result, and instances with exact separation

geometric mean of time (on 42 common instances)

イロト イポト イヨト イヨト

### More rows: Gap closed



### ▶ a (quick) two-row intersection cut separator

- assessment: strength of the two-row model
- a (slow) generic arbitrary-MIP cut separator
- assessment: strength of multi-row model and variants

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- a (quick) two-row intersection cut separator
- assessment: strength of the two-row model
- a (slow) generic arbitrary-MIP cut separator
- assessment: strength of multi-row model and variants

- ▶ a (quick) two-row intersection cut separator
- assessment: strength of the two-row model
- ▶ a (slow) generic arbitrary-MIP cut separator
- assessment: strength of multi-row model and variants

- ▶ a (quick) two-row intersection cut separator
- assessment: strength of the two-row model
- ▶ a (slow) generic arbitrary-MIP cut separator
- assessment: strength of multi-row model and variants
#### Conclusions

Multi-row cuts:

- Number of rows: few or almost all
- Intersection cuts: need to apply all strengthenings

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

#### Conclusions

Multi-row cuts:

- Number of rows: few or almost all
- Intersection cuts: need to apply all strengthenings

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# ///////

# 

## The integer hull



・ロト ・聞ト ・ヨト ・ヨト

э

In practice: much harder

## The integer hull



ヘロト ヘ週ト ヘヨト ヘヨト

э

In practice: much harder

## The integer hull



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

In practice: much harder

Can we avoid the integer hulls  $\mathcal{X}_{ij}$ ?

 $\overline{Q} = \{ \alpha \in \mathbb{R}^n_+ \mid$  $\forall i, \forall x \in \mathcal{X}_{i,i+1},$  $s_i^x \alpha_i + s_{i+1}^x \alpha_{i+1} \ge 1$  $\forall i: r^i \in \operatorname{cone}(r^{i-1}, r^{i+1}),$  $\alpha_i \leq \lambda_{i-1}^i \alpha_{i-1} + \lambda_{i+1}^i \alpha_{i+1} \}$ 

・ロト・雪ト・雪ト・雪・ 今日・

Can we avoid the integer hulls  $\mathcal{X}_{ij}$ ?

$$\begin{split} \overline{Q} &= \{ \ \alpha \in \mathbb{R}^n_+ \ | \\ &\forall i, \ \forall x \in \mathcal{X}_{i,i+1}, \\ &\forall i: \ r^i \in \operatorname{cone}(r^{i-1}, r^{i+1}), \\ \end{split}$$

$$\begin{split} & S_i^x \alpha_i + S_{i+1}^x \alpha_{i+1} \ge 1 \\ & \alpha_i \le \lambda_{i-1}^i \alpha_{i-1} + \lambda_{i+1}^i \alpha_{i+1} \\ & \beta_i \le S \cap (f + \operatorname{cone}(r^i, r^{i+1})), \\ & S_i^x \alpha_i + S_{i+1}^x \alpha_{i+1} \ge 1 \\ & \forall i: \ r^i \in \operatorname{cone}(r^{i-1}, r^{i+1}), \\ & \alpha_i \le \lambda_{i-1}^i \alpha_{i-1} + \lambda_{i+1}^i \alpha_{i+1} \\ & \}, \\ \end{split}$$
with  $S \subset \mathbb{Z}^2.$ 







(日)、



▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)







▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで



▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで



▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで



▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

#### Find an integer point in $interior(L_{\alpha})$ or prove that $L_{\alpha}$ is lattice-free.

- possible in polynomial time for any fixed dimension d (Barvinok's algorithm)
- ▶ but d = 2
- we know  $S \cap L_{\alpha}$
- closed-form formula?



#### Find an integer point in $interior(L_{\alpha})$ or prove that $L_{\alpha}$ is lattice-free.

- possible in polynomial time fo any fixed dimension d (Barvinok's algorithm)
- ▶ but d = 2
- ▶ we know  $S \cap L_{\alpha}$
- closed-form formula?



◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Find an integer point in  $interior(L_{\alpha})$  or prove that  $L_{\alpha}$  is lattice-free.

- possible in polynomial time for any fixed dimension d (Barvinok's algorithm)
- ▶ but d = 2
- we know  $S \cap L_{\alpha}$
- closed-form formula?



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Find an integer point in  $interior(L_{\alpha})$  or prove that  $L_{\alpha}$  is lattice-free.

- possible in polynomial time for any fixed dimension d (Barvinok's algorithm)
- ▶ but d = 2
- we know  $S \cap L_{\alpha}$
- closed-form formula?



ヘロト ヘ週ト ヘヨト ヘヨト

Find an integer point in  $interior(L_{\alpha})$  or prove that  $L_{\alpha}$  is lattice-free.

- possible in polynomial time for any fixed dimension d (Barvinok's algorithm)
- ▶ but d = 2
- we know  $S \cap L_{\alpha}$
- closed-form formula?



イロト 不得 トイヨト イヨト

Find an integer point in  $interior(L_{\alpha})$  or prove that  $L_{\alpha}$  is lattice-free.

- possible in polynomial time for any fixed dimension d (Barvinok's algorithm)
- ▶ but d = 2
- we know  $S \cap L_{\alpha}$
- closed-form formula?



イロト 不得 トイヨト イヨト

## The oracle: conv(T)

Find an integer point in  $interior(L_{\alpha})$  or prove that  $L_{\alpha}$  is lattice-free.

0

0

0

1. Consider the convex hull  $\operatorname{conv}(T)$  , where  $T := S \cap \operatorname{boundary}(L_{\alpha})$ .

• triangularize  $\operatorname{conv}(T)$ 

 find integer points on integer segments and integer triangles



## The oracle: conv(T)

Find an integer point in  $interior(L_{\alpha})$  or prove that  $L_{\alpha}$  is lattice-free.

0

0

0

1. Consider the convex hull  $\operatorname{conv}(T)$  , where  $T := S \cap \operatorname{boundary}(L_{\alpha})$ .

• triangularize  $\operatorname{conv}(T)$ 

 find integer points on integer segments and integer triangles



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

## The oracle: conv(T)

Find an integer point in  $interior(L_{\alpha})$  or prove that  $L_{\alpha}$  is lattice-free.

0

0

0

1. Consider the convex hull  $\operatorname{conv}(T)$  , where  $T := S \cap \operatorname{boundary}(L_{\alpha})$ .

- triangularize  $\operatorname{conv}(T)$
- find integer points on integer segments and integer triangles



#### The oracle: conv(T), continued

Let  $\Delta$  be  $\operatorname{conv}(0, u, v)$  with  $u, v \in \mathbb{Z}$  and  $\operatorname{gcd}(u_1, u_2) = \operatorname{gcd}(v_1, v_2) = 1$ .  $\left\{ \frac{\lambda}{\det([u|v])} u + \frac{\mu}{\det([u|v])} v : \lambda, \mu \in \mathbb{Z}_+, \ 0 < \lambda + \mu < \det([u|v]) \right\}$ 

Prop.:  $\Delta$  has an interior lattice point with  $\mu = 1$ , or is lattice-free.



It is enough to solve the diophantine system

$$\begin{cases} \lambda u_1 + v_1 = k_1 \det([u|v]) \\ \lambda u_2 + v_2 = k_2 \det([u|v]) \end{cases}, \ \lambda, k_1, k_2 \in \mathbb{Z} \end{cases}$$

#### The oracle: conv(T), continued

Let  $\Delta$  be  $\operatorname{conv}(0, u, v)$  with  $u, v \in \mathbb{Z}$  and  $\operatorname{gcd}(u_1, u_2) = \operatorname{gcd}(v_1, v_2) = 1$ .

$$\left\{\frac{\lambda}{\det([u|v])}u + \frac{\mu}{\det([u|v])}v : \lambda, \mu \in \mathbb{Z}_+, \ 0 < \lambda + \mu < \det([u|v])\right\}$$

Prop.:  $\Delta$  has an interior lattice point with  $\mu = 1$ , or is lattice-free.



It is enough to solve the diophantine system

$$\begin{cases} \lambda u_1 + v_1 = k_1 \det([u|v]) \\ \lambda u_2 + v_2 = k_2 \det([u|v]) \end{cases}, \ \lambda, k_1, k_2 \in \mathbb{Z} \end{cases}$$

#### The oracle: conv(T), continued

Let  $\Delta$  be  $\operatorname{conv}(0, u, v)$  with  $u, v \in \mathbb{Z}$  and  $\operatorname{gcd}(u_1, u_2) = \operatorname{gcd}(v_1, v_2) = 1$ .

$$\left\{\frac{\lambda}{\det([u|v])}u + \frac{\mu}{\det([u|v])}v : \lambda, \mu \in \mathbb{Z}_+, \ 0 < \lambda + \mu < \det([u|v])\right\}$$

Prop.:  $\Delta$  has an interior lattice point with  $\mu = 1$ , or is lattice-free.



It is enough to solve the diophantine system

$$\begin{cases} \lambda u_1 + v_1 = k_1 \det([u|v]) \\ \lambda u_2 + v_2 = k_2 \det([u|v]) \end{cases}, \ \lambda, k_1, k_2 \in \mathbb{Z} \end{cases}$$

# The oracle: interior( $L_{\alpha}$ )

2. Assuming conv(T) lattice-free,

Prop.: It is enough to check 2 or 3 specific integer points:



#### Solver tricks: callbacks

#### Solving slave MIPs

 $\begin{array}{ll} \min & \bar{\alpha}^T x \\ \text{s.t.} & x \subseteq P, \end{array}$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Feasible solution  $\hat{x}$  with  $\bar{\alpha}^T \hat{x} < \bar{\alpha}_0$  $\rightarrow \hat{x}$  can be added to S.

• Dual bound  $\underline{z}$  reaches  $\bar{\alpha}_0$ ,

 $\rightarrow (\bar{\alpha}, \bar{\alpha}_0)$  is valid for P.

#### Solver tricks: callbacks

Solving slave MIPs

 $\begin{array}{ll} \min & \bar{\alpha}^T x \\ \text{s.t.} & x \subseteq P, \end{array}$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Feasible solution  $\hat{x}$  with  $\bar{\alpha}^T \hat{x} < \bar{\alpha}_0$ 

 $\rightarrow \hat{x}$  can be added to S.

▶ Dual bound <u>z</u> reaches  $\bar{\alpha}_0$ , →  $(\bar{\alpha}, \bar{\alpha}_0)$  is valid for P.

#### Solver tricks: callbacks

Solving slave MIPs

 $\begin{array}{ll} \min & \bar{\alpha}^T x \\ \text{s.t.} & x \subseteq P, \end{array}$ 

• Feasible solution  $\hat{x}$  with  $\bar{\alpha}^T \hat{x} < \bar{\alpha}_0$ 

 $\rightarrow \hat{x}$  can be added to S.

▶ Dual bound  $\underline{z}$  reaches  $\bar{\alpha}_0$ ,

 $\rightarrow (\bar{\alpha}, \bar{\alpha}_0)$  is valid for *P*.
### Two-row relaxation: which models?

#### We are still far from a closure

▶ What reasonable set of two-models can we select? → All models read from a simplex tableau →  $O(m^2)$  two-row models

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Two-row relaxation: which models?

- We are still far from a closure
- What reasonable set of two-models can we select?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\rightarrow$  All models read from a simplex tableau  $\rightarrow$   ${\cal O}(m^2)$  two-row models Two-row relaxation: which models?

- We are still far from a closure
- What reasonable set of two-models can we select?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- $\rightarrow$  All models read from a simplex tableau
- $\rightarrow {\cal O}(m^2)$  two-row models

"all" two-row models: separation loop

```
Let x^* \leftarrow \mathsf{LP} optimium
Read the two-row models from optimal tableau.
Read and add GMIs from that tableau.
```

```
do {
Let x^* \leftarrow new LP optimum.
Separate x^* with the two-row models.
} while (cuts were found).
```

"all" two-row models: separation loop

```
Let x^* \leftarrow \mathsf{LP} optimium
Read the two-row models from optimal tableau.
Read and add GMIs from that tableau.
```

```
do {
Let x^* \leftarrow new LP optimum.
Separate x^* with the two-row models.
} while (cuts were found).
```

"all" two-row models: separation loop

```
Let x^* \leftarrow \mathsf{LP} optimium
Read the two-row models from optimal tableau.
Read and add GMIs from that tableau.
```

```
do {
Let x^* \leftarrow new LP optimum.
Separate x^* with the two-row models.
} while (cuts were found).
```

Computations on the 62 MIPLIB 3.0 (preprocessed) instances for which

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- (a). the integrality gap is not zero, and
- (b). an optimal MIP solution is known.

#### We have a result for 55/62 instances (4 numerical, 3 memory).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For 13 instances, the separation is exact.

#### We have a result for 55/62 instances (4 numerical, 3 memory).

|           | cuts   | gc%    |
|-----------|--------|--------|
| GMI       | 24.800 | 22.60% |
| All 2-row | 72.382 | 37.49% |

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For 13 instances, the separation is exact.

We have a result for 55/62 instances (4 numerical, 3 memory).

|           | cuts   | gc%    |
|-----------|--------|--------|
| GMI       | 24.800 | 22.60% |
| All 2-row | 72.382 | 37.49% |

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For 13 instances, the separation is exact.

### Heuristic selection of two-row models

Issue:

#### $\blacktriangleright \ O(m^2)$ is already a large number of models

Hypothesis:

▶ Not all models are necessary to achieve good separation

Rationale:

- MIPLIB models are mostly sparse
- Multi-cuts from rows with no common support are linear combinations of the corresponding one-row cuts

### Heuristic selection of two-row models

Issue:

 $\blacktriangleright \ O(m^2)$  is already a large number of models

Hypothesis:

Not all models are necessary to achieve good separation

Rationale:

- MIPLIB models are mostly sparse
- Multi-cuts from rows with no common support are linear combinations of the corresponding one-row cuts

### Heuristic selection of two-row models

Issue:

 $\blacktriangleright \ O(m^2)$  is already a large number of models

Hypothesis:

Not all models are necessary to achieve good separation

Rationale:

- MIPLIB models are mostly sparse
- Multi-cuts from rows with no common support are linear combinations of the corresponding one-row cuts

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Heuristic selection of two-row models: results

With an arbitrary limit of m two-row models, we have a result for 58/62 instances (1 numerical, 3 memory).

On the 55 common results,

For 25 instances, the separation is exact.

Heuristic selection of two-row models: results

With an arbitrary limit of m two-row models, we have a result for 58/62 instances (1 numerical, 3 memory).

On the 55 common results,

|           | cuts   | gc%    |
|-----------|--------|--------|
| GMI       | 24.800 | 22.60% |
| All 2-row | 72.382 | 37.49% |
| Heuristic | 57.418 | 35.19% |

For 25 instances, the separation is exact.

Heuristic selection of two-row models: results

With an arbitrary limit of m two-row models, we have a result for 58/62 instances (1 numerical, 3 memory).

On the 55 common results,

|           | cuts   | gc%    |
|-----------|--------|--------|
| GMI       | 24.800 | 22.60% |
| All 2-row | 72.382 | 37.49% |
| Heuristic | 57.418 | 35.19% |

For 25 instances, the separation is exact.

Polarity for general polyhedra: Conify

| $\frac{Polyhedron}{P}$   |               | Polyhedral cone $P^+$                    |
|--------------------------|---------------|------------------------------------------|
| vertex v                 | $\rightarrow$ | extreme ray $(v, -1)$                    |
| extreme ray $r$          | $\rightarrow$ | extreme ray $\left(r,0 ight)$            |
| l in the lineality space | $\rightarrow$ | $\left(l,0 ight)$ in the lineality space |
|                          |               |                                          |
|                          |               |                                          |
|                          |               |                                          |

Polarity for general polyhedra: Conify

| Polyhedron $P$           |                   | Polyhedral cone $P^+$                    |
|--------------------------|-------------------|------------------------------------------|
| vertex v                 | $\Leftrightarrow$ | extreme ray $(v, -1)$                    |
| extreme ray $r$          | $\Leftrightarrow$ | extreme ray $\left(r,0 ight)$            |
| l in the lineality space | $\Leftrightarrow$ | $\left(l,0 ight)$ in the lineality space |
|                          |                   |                                          |
|                          |                   |                                          |
|                          |                   |                                          |

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��

Polarity for general polyhedra: Conify

| $\frac{Polyhedron}{P}$                   |                   | Polyhedral cone $P^+$                            |
|------------------------------------------|-------------------|--------------------------------------------------|
| vertex v                                 | $\Leftrightarrow$ | extreme ray $(v, -1)$                            |
| extreme ray $r$                          | $\Leftrightarrow$ | extreme ray $\left( r,0 ight)$                   |
| l in the lineality space                 | $\Leftrightarrow$ | $\left( l,0 ight)$ in the lineality space        |
| facet-defining $\alpha^T x \ge \alpha_0$ | $\Leftrightarrow$ | facet-defining $\alpha^T x + \alpha_0 x_0 \ge 0$ |
| valid $\alpha^T x = \alpha_0$            | $\Leftrightarrow$ | valid $\alpha^T x + \alpha_0 x_0 = 0$            |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Conify: P is a polytope



Note: 
$$P = \operatorname{proj}_x(P^+ \cap \{x_0 = -1\}).$$
  
 $P^+ = \{(x, x_0) \in R^{n+1} : x_0 \le 0, x \in -x_0P\}$ 

## Conify: P is a general polyhedron



(日)、(四)、(E)、(E)、(E)

Note:  $P = \operatorname{proj}_x(P^+ \cap \{x_0 = -1\}).$  $P^+ = \{(x, x_0) \in R^{n+1} : x_0 \le 0, \ "x \in -x_0P + \operatorname{recc}(P)"\}$ 

# Polarity for full-dimensional polyhedral cones

| $P^+$                                       |                                                  | Q                                                           |
|---------------------------------------------|--------------------------------------------------|-------------------------------------------------------------|
| extreme ray $r$<br>l in the lineality space | $ \substack{\Leftrightarrow\\ \Leftrightarrow} $ | facet-defining $r^T \alpha \ge 0$<br>valid $l^T \alpha = 0$ |
|                                             |                                                  |                                                             |
|                                             |                                                  |                                                             |

<□ > < @ > < E > < E > E のQ @

# Polarity for full-dimensional polyhedral cones

| $P^+$                                   |                   | Q                                       |
|-----------------------------------------|-------------------|-----------------------------------------|
| extreme ray $r$                         | $\Leftrightarrow$ | facet-defining $r^T \alpha \ge 0$       |
| l in the lineality space                | $\Leftrightarrow$ | valid $l^T \alpha = 0$                  |
| ${\cal Q}$ is the polar of ${\cal P}^+$ | ⇔                 | ${\cal P}^+$ is the polar of ${\cal Q}$ |
|                                         |                   |                                         |

<□ > < @ > < E > < E > E のQ @

# Polarity for full-dimensional polyhedral cones

| $P^+$                            |                   | Q                                       |
|----------------------------------|-------------------|-----------------------------------------|
| extreme ray r                    | $\Leftrightarrow$ | facet-defining $r^T \alpha \ge 0$       |
| l in the lineality space         | $\Leftrightarrow$ | valid $l^T \alpha = 0$                  |
| $Q$ is the polar of $P^+$        | ⇔                 | ${\cal P}^+$ is the polar of ${\cal Q}$ |
| facet-defining $\beta^T x \ge 0$ | $\Leftrightarrow$ | extreme ray $eta$                       |
| valid $\gamma^T x = 0$           | $\Leftrightarrow$ | $\gamma$ in the lineality space         |

<□ > < @ > < E > < E > E のQ @

Going back to general (full-dimensional) polyhedra

| Polyhedron                | Polyhedral cone                   | Polar of $P^+$                |
|---------------------------|-----------------------------------|-------------------------------|
| P                         | $P^+$                             | Q                             |
| vert. v                   | ray $(v, -1)$                     | $v^T \alpha - \alpha_0 \ge 0$ |
| ray $r$                   | ray $(v,0)$                       | $r^T \alpha \ge 0$            |
| l in lin.sp.              | (l,0) in lin.sp.                  | $l^T \alpha = 0$              |
|                           |                                   |                               |
| $\alpha^T x \ge \alpha_0$ | $\alpha^T x + \alpha_0 x_0 \ge 0$ | ray $(lpha, lpha_0)$          |
| $\alpha^T x = \alpha_0$   | $\alpha^T x + \alpha_0 x_0 = 0$   | $(lpha, lpha_0)$ in lin.sp.   |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?