Multi-row approaches to cutting plane generation

Laurent Poirrier

Montefiore Institute, ULg

Tuesday, December 18th, 2012

Example: The university is hiring

	Junior	Senior
Teaching	40 hours	80 hours
Pay	$\$ 31$	$\$ 45$
Hire	at least one third	

Have as many taught hours as possible, with a budget of \$ 239 .

Example: The university is hiring

	Junior	Senior
Teaching	40 hours	80 hours
Pay	$\$ 31$	$\$ 45$
Hire	at least one third	

Have as many taught hours as possible, with a budget of $\$ 239$.

$$
\begin{array}{rrl}
\max & 40 x_{1}+80 x_{2} & \\
\text { s.t. } & 31 x_{1}+45 x_{2} & \leq 239 \\
& x_{1} \geq \frac{1}{2} x_{2} & \\
& x_{1} & \geq 0 \\
& x_{2} & \geq 0 \\
& x_{1}, \quad x_{2} & \in \mathbb{Z}
\end{array}
$$

Applications

- Scheduling (timetable building, machine tool switching, ...)
- Bin-packing (chipset floor planning, ...)
- Traveling Salesman Problem (ICs soldering and drilling)
- Discrete flow problems (power and energy distribution, ...)
- Assignment
- Lot-sizing
- Transportation problems

Most are NP-hard, and computationally difficult to solve.

Applications

- Scheduling (timetable building, machine tool switching, ...)
- Bin-packing (chipset floor planning, ...)
- Traveling Salesman Problem (ICs soldering and drilling)
- Discrete flow problems (power and energy distribution, ...)
- Assignment
- Lot-sizing
- Transportation problems

Most are NP-hard, and computationally difficult to solve.

A Mixed Integer linear Programming problem

$\min c^{T} x$
(MIP) s.t. $A x \geq b$
$x_{j} \in \mathbb{Z}$, for $j \in J$

Solving MIPs: branch and bound

$\begin{array}{ll} & \min \\ \text { (MIP) } & c^{T} x \\ \text { s.t. } & A x \geq b \\ & x_{j} \in \mathbb{Z}, \text { for } j \in J\end{array}$

Solving MIPs: branch and bound

$$
\begin{array}{lll}
& \begin{array}{ll}
\min & c^{T} x \\
\text { s.t. } & A x \geq b \\
& \\
& x_{j} \in \mathbb{Z}, \text { for } j \in J \\
& x_{i}^{*} \notin \mathbb{Z}
\end{array}
\end{array}
$$

Solving MIPs: branch and bound

Solving MIPs: branch and bound

Cuts / Valid inequalities

$\begin{array}{ll} & \text { min } \\ \text { (MIP) } & c^{T} x \\ \text { s.t. } & A x \geq b \\ & x_{j} \in \mathbb{Z}, \text { for } j \in J\end{array}$

Cuts / Valid inequalities

$$
\begin{array}{ll}
& \min \\
\text { (MIP) } & c^{T} x \\
\text { s.t. } & A x \geq b \\
& x_{j} \in \mathbb{Z}, \text { for } j \in J
\end{array}
$$

(cut)
$\alpha x \geq 1$

Why cut?

Most often,

	no cuts	\leftrightarrow
computing cuts	0	more cuts
each b\&b node	faster	
b\&b nodes	more	slower time
		less

In practice,
disabling cuts $\rightarrow 54 \times$ slower
(geometric mean over 719 instances [Bixby, Rothberg, 2007]) ㅁ

Why cut?

Most often,

	no cuts	\leftrightarrow	more cuts
computing cuts	0		more time
each b\&b node	faster		slower
b\&b nodes	more		less

In practice,

Why cut?

Most often,

	no cuts	\leftrightarrow	more cuts
computing cuts	0	more time	
each b\&b node	faster		slower
b\&b nodes	more	less	

In practice,

$$
\text { disabling cuts } \rightarrow 54 \times \text { slower }
$$

(geometric mean over 719 instances [Bixby, Rothberg, 2007]).

Example of cut

Let $x \in \mathbb{Z}_{+}^{3}$,

$$
3 x_{1}+4 x_{2}-5 x_{3} \leq 4.5
$$

Example of cut

Let $x \in \mathbb{Z}_{+}^{3}$,

$$
\begin{gathered}
3 x_{1}+4 x_{2}-5 x_{3} \leq 4.5 \\
\Downarrow \\
3 x_{1}+4 x_{2}-5 x_{3} \leq 4
\end{gathered}
$$

Example of cut

Let $x \in \mathbb{Z}_{+}^{3}$,

$$
3.4 x_{1}+4.2 x_{2}-4.6 x_{3} \leq 4.5
$$

Example of cut

Let $x \in \mathbb{Z}_{+}^{3}$,

$$
3.4 x_{1}+4.2 x_{2}-4.6 x_{3} \leq 4.5
$$

\Downarrow

$$
3 x_{1}+4 x_{2}-5 x_{3} \leq 4.5
$$

Chvatál-Gomory cut

Example of cut

Let $x \in \mathbb{Z}_{+}^{3}$,

$$
3.4 x_{1}+4.2 x_{2}-4.6 x_{3} \leq 4.5
$$

\Downarrow

$$
3 x_{1}+4 x_{2}-5 x_{3} \leq 4.5
$$

\Downarrow

$$
3 x_{1}+4 x_{2}-5 x_{3} \leq 4
$$

Example of cut

Let $x \in \mathbb{Z}_{+}^{3}$,

$$
3.4 x_{1}+4.2 x_{2}-4.6 x_{3} \leq 4.5
$$

\Downarrow

$$
\begin{gathered}
3 x_{1}+4 x_{2}-5 x_{3} \leq 4.5 \\
\Downarrow \\
3 x_{1}+4 x_{2}-5 x_{3} \leq 4
\end{gathered}
$$

Chvatál-Gomory cut

What cuts?

Disabled cut	Performance degradation
Gomory mixed-integer	$2.52 \times$
Mixed-integer rounding	$1.83 \times$
Knapsack cover	$1.40 \times$
Flow cover	$1.22 \times$
Implied bound	$1.19 \times$
Flow path	$1.04 \times$
Clique	$1.02 \times$
GUB cover	$1.02 \times$

(geometric mean over 106 medium-sized instances [Bixby, Rothberg, 2007]).

A. Two-Row cuts

A.1. Background

Single-row cuts

From one (re)formulation of the problem

$$
\begin{array}{ll}
& \min \\
(\mathrm{MIP}) & \bar{c}^{T} x \\
\text { s.t. } & \bar{A} x \geq \bar{b} \\
& x_{J} \in \mathbb{Z}
\end{array}
$$

we extract one constraint $\bar{A}_{i} x \geq \bar{b}_{i}$.

- Knowing that $x_{j} \in \mathbb{Z}$, we construct a stronger inequality. - In some cases, the cut can separate a specific point x^{*}.

Single-row cuts

From one (re)formulation of the problem

$$
\begin{array}{ll}
\min & \bar{c}^{T} x \\
(\mathrm{MIP}) & \text { s.t. } \\
& \bar{A} x \geq \bar{b} \\
& x_{J} \in \mathbb{Z}
\end{array}
$$

we extract one constraint $\bar{A}_{i} x \geq \bar{b}_{i}$.

- Knowing that $x_{j} \in \mathbb{Z}$, we construct a stronger inequality.
- In some cases, the cut can separate a specific point x^{*}

Single-row cuts

From one (re)formulation of the problem

$$
\begin{array}{ll}
\min & \bar{c}^{T} x \\
(\mathrm{MIP}) \text { s.t. } & \bar{A} x \geq \bar{b} \\
& x_{J} \in \mathbb{Z}
\end{array}
$$

we extract one constraint $\bar{A}_{i} x \geq \bar{b}_{i}$.

- Knowing that $x_{j} \in \mathbb{Z}$, we construct a stronger inequality.
- In some cases, the cut can separate a specific point x^{*}.

Two-row cuts

From one (re)formulation of the problem

$$
\begin{array}{rlrl}
& \min & \bar{c}^{T} x \\
\text { (MIP) } & \text { s.t. } & \bar{A} x & =\bar{b} \\
& & x & \geq 0 \\
& & x_{J} & \in \mathbb{Z}
\end{array}
$$

we extract two constraints

As a vector equation,

Two-row cuts

From one (re)formulation of the problem

$$
\begin{array}{rlrl}
\min & \bar{c}^{T} x \\
\text { (MIP) } & \text { s.t. } & \bar{A} x & =\bar{b} \\
& & x & \geq 0 \\
& & x_{J} & \in \mathbb{Z}
\end{array}
$$

we extract two constraints

$$
\begin{array}{rlrl}
x_{1}+\sum_{j} \bar{a}_{1 j} s_{j} & =f_{1}, & & x_{1}, x_{2} \in \mathbb{Z} \\
+x_{2}+\sum_{j} \bar{a}_{2 j} s_{j} & =f_{2}
\end{array}
$$

As a vector equation,

Two-row cuts

From one (re)formulation of the problem

$$
\begin{array}{rlrl}
\min & \bar{c}^{T} x \\
\text { (MIP) } & \text { s.t. } & \bar{A} x & =\bar{b} \\
& & x & \geq 0 \\
& & x_{J} & \in \mathbb{Z}
\end{array}
$$

we extract two constraints

$$
\begin{array}{rlrl}
x_{1}+\sum_{j} \bar{a}_{1 j} s_{j} & =f_{1}, & & x_{1}, x_{2} \in \mathbb{Z} \\
+x_{2}+\sum_{j} \bar{a}_{2 j} s_{j} & =f_{2}
\end{array}
$$

As a vector equation,

$$
\left(P_{I}\right) \quad x=f+\sum_{j} r^{j} s_{j}, \quad \begin{array}{ll}
x \in \mathbb{Z}^{2} \\
s \in \mathbb{R}_{+}^{n}
\end{array}
$$

Two-row cuts

From one (re)formulation of the problem
we extract two constraints

$$
\begin{aligned}
x_{1}+\sum_{j} \bar{a}_{1 j} s_{j} & =f_{1}, & & x_{1}, x_{2} \in \mathbb{Z} \\
+x_{2}+\sum_{j} \bar{a}_{2 j} s_{j} & =f_{2}, & & s_{j} \in \mathbb{R}_{+}
\end{aligned}
$$

As a vector equation,

$$
\left(P_{I}\right) \quad x=f+\sum_{j} r^{j} s_{j}, \quad \begin{array}{ll}
x \in \mathbb{Z}^{2} \\
s \in \mathbb{R}_{+}^{n}
\end{array}
$$

In case (MIP) describes a simplex tableau, $\left(x_{L P}^{*}, s_{L P}^{*}\right)=(f, 0)$.
A.2. Problem statement

The two-row model

$$
\begin{aligned}
x & =f+\sum_{j} r^{j} s_{j} \\
x & \in \mathbb{Z}^{2} \\
s_{j} & \geq 0
\end{aligned}
$$

The two-row model

$$
\begin{aligned}
x & =f+\sum_{j} r^{j} s_{j} \\
x & \in \mathbb{Z}^{2} \\
s_{j} & \geq 0
\end{aligned}
$$

Example:

$$
\begin{gathered}
s=\left(\frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) \\
x=f+\frac{1}{2} r^{1}+\frac{1}{2} r^{5}+\frac{1}{2} r^{4}+\frac{1}{2} r^{3}
\end{gathered}
$$

The two-row model

$$
\begin{aligned}
x & =f+\sum_{j} r^{j} s_{j} \\
x & \in \mathbb{Z}^{2} \\
s_{j} & \geq 0
\end{aligned}
$$

Example:

$$
\begin{gathered}
s=\left(\frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) \\
x=f+\frac{1}{2} r^{1}+\frac{1}{2} r^{5}+\frac{1}{2} r^{4}+\frac{1}{2} r^{3} \\
x=f+\frac{1}{2} r^{4}+\frac{1}{12} r^{2}
\end{gathered}
$$

The two-row model

$$
\begin{aligned}
x & =f+\sum_{j} r^{j} s_{j} \\
x & \in \mathbb{Z}^{2} \\
s_{j} & \geq 0
\end{aligned}
$$

An inequality of the form

$$
\alpha_{1} s_{1}+\ldots+\alpha_{n} s_{n} \geq 1
$$

with $\alpha_{i} \geq 0$,
interior $\left(L_{\alpha}\right)$

The two-row model

$$
\begin{aligned}
x & =f+\sum_{j} r^{j} s_{j} \\
x & \in \mathbb{Z}^{2} \\
s_{j} & \geq 0
\end{aligned}
$$

An inequality of the form

$$
\alpha_{1} s_{1}+\ldots+\alpha_{n} s_{n} \geq 1
$$

with $\alpha_{i} \geq 0$, cuts off interior $\left(L_{\alpha}\right)$
in the x space

The two-row model

$$
\begin{aligned}
x & =f+\sum_{j} r^{j} s_{j} \\
x & \in \mathbb{Z}^{2} \\
s_{j} & \geq 0
\end{aligned}
$$

An inequality of the form

$$
\alpha_{1} s_{1}+\ldots+\alpha_{n} s_{n} \geq 1
$$

with $\alpha_{i} \geq 0$, cuts off interior $\left(L_{\alpha}\right)$
in the x space where $v^{i}=f+\frac{1}{\alpha_{i}} r^{i}$.

Validity: The linear programming intuition

Given $\bar{x} \in \mathbb{Z}^{2}$, we want that

$$
\forall s \in \mathbb{R}_{+}^{n}: \bar{x}=f+R s, \quad \alpha_{1} s_{1}+\ldots+\alpha_{n} s_{n} \geq 1
$$

Validity: The linear programming intuition

Given $\bar{x} \in \mathbb{Z}^{2}$, we want that

$$
\forall s \in \mathbb{R}_{+}^{n}: \bar{x}=f+R s, \quad \alpha_{1} s_{1}+\ldots+\alpha_{n} s_{n} \geq 1
$$

i.e. we want

$$
\begin{aligned}
\min & \alpha_{1} s_{1}+\ldots+\alpha_{n} s_{n} \geq 1 \\
\mathrm{s.t.} & R s=\bar{x}-f \\
& s \geq 0
\end{aligned}
$$

therefore we need

Validity: The linear programming intuition

Given $\bar{x} \in \mathbb{Z}^{2}$, we want that

$$
\forall s \in \mathbb{R}_{+}^{n}: \bar{x}=f+R s, \quad \alpha_{1} s_{1}+\ldots+\alpha_{n} s_{n} \geq 1
$$

i.e. we want

$$
\begin{aligned}
\min & \alpha_{1} s_{1}+\ldots+\alpha_{n} s_{n} \geq 1 \\
\text { s.t. } & R s=\bar{x}-f \\
& s \geq 0
\end{aligned}
$$

therefore we need

$$
\forall i, j, s_{i}^{\bar{x}}, s_{j}^{\bar{x}}: \bar{x}=f+s_{i}^{\bar{x}} r^{i}+s_{j}^{\bar{x}} r^{j}, \quad s_{i}^{\bar{x}} \alpha_{i}+s_{j}^{\bar{x}} \alpha_{j} \geq 1
$$

Lattice-free sets - the geometrical intuition

Given $\bar{x} \in \mathbb{Z}^{2}$,
for all $i, j: \bar{x} \in f+\operatorname{cone}\left(r^{i}, r^{j}\right)$,

$$
s_{i}^{\bar{x}} \alpha_{i}+s_{j}^{\bar{x}} \alpha_{j} \geq 1,
$$

with $s_{i}^{\bar{x}}, s_{j}^{\bar{x}}: \bar{x}=f+s_{i}^{\bar{x}} r^{i}+s_{j}^{\bar{x}} r^{j}$.

Lattice-free sets - the geometrical intuition

Given $\bar{x} \in \mathbb{Z}^{2}$,
for all $i, j: \bar{x} \in f+\operatorname{cone}\left(r^{i}, r^{j}\right)$,

$$
s_{i}^{\bar{x}} \alpha_{i}+s_{j}^{\bar{x}} \alpha_{j} \geq 1,
$$

with $s_{i}^{\bar{x}}, s_{j}^{\bar{x}}: \bar{x}=f+s_{i}^{\bar{x}} r^{i}+s_{j}^{\bar{x}} r^{j}$.

Lattice-free sets - the geometrical intuition

Given $\bar{x} \in \mathbb{Z}^{2}$,
for all $i, j: \bar{x} \in f+\operatorname{cone}\left(r^{i}, r^{j}\right)$,

$$
s_{i}^{\bar{x}} \alpha_{i}+s_{j}^{\bar{x}} \alpha_{j} \geq 1,
$$

with $s_{i}^{\bar{x}}, s_{j}^{\bar{x}}: \bar{x}=f+s_{i}^{\bar{x}} r^{i}+s_{j}^{\bar{x}} r^{j}$.

0

Lattice-free sets - the geometrical intuition

Given $\bar{x} \in \mathbb{Z}^{2}$,
for all $i, j: \bar{x} \in f+\operatorname{cone}\left(r^{i}, r^{j}\right)$,

$$
s_{i}^{\bar{x}} \alpha_{i}+s_{j}^{\bar{x}} \alpha_{j} \geq 1,
$$

with $s_{i}^{\bar{x}}, s_{j}^{\bar{x}}: \bar{x}=f+s_{i}^{\bar{x}} r^{i}+s_{j}^{\bar{x}} r^{j}$.

0

Lattice-free sets - the geometrical intuition

Given $\bar{x} \in \mathbb{Z}^{2}$,
for all $i, j: \bar{x} \in f+\operatorname{cone}\left(r^{i}, r^{j}\right)$,

$$
s_{i}^{\bar{x}} \alpha_{i}+s_{j}^{\bar{x}} \alpha_{j} \geq 1,
$$

with $s_{i}^{\bar{x}}, s_{j}^{\bar{x}}: \bar{x}=f+s_{i}^{\bar{x}} r^{i}+s_{j}^{\bar{x}} r^{j}$.

${ }_{x_{1}}$
0

Lattice-free sets - the intuition, for all x

For all $x \in \mathbb{Z}^{2}$,
for all $i, j: x \in f+\operatorname{cone}\left(r^{i}, r^{j}\right)$,

$$
s_{i}^{x} \alpha_{i}+s_{j}^{x} \alpha_{j} \geq 1,
$$

with $s_{i}^{x}, s_{j}^{x}: x=f+s_{i}^{x} r^{i}+s_{j}^{x} r^{j}$.

Lattice-free sets - the intuition, for every cone

For all i, j,
for all $x \in \mathbb{Z}^{2} \cap\left(f+\operatorname{cone}\left(r^{i}, r^{j}\right)\right)$,

$$
s_{i}^{x} \alpha_{i}+s_{j}^{x} \alpha_{j} \geq 1,
$$

with $s_{i}^{x}, s_{j}^{x}: x=f+s_{i}^{x} r^{i}+s_{j}^{x} r^{j}$.

Lattice-free sets - the set $\mathcal{X}_{i j}$

For all i, j,
for all $x \in \mathcal{X}_{i j}$,

$$
s_{i}^{x} \alpha_{i}+s_{j}^{x} \alpha_{j} \geq 1,
$$

with $s_{i}^{x}, s_{j}^{x}: x=f+s_{i}^{x} r^{i}+s_{j}^{x} r^{j}$.

- we can restrict $x \in \mathbb{Z}^{2}$ to $x \in \mathcal{X}_{i j}$ where $\mathcal{X}_{i j}$ is the set of the vertices of
$\mathbb{Z}^{2} \cap\left(f+\operatorname{conv}\left(r^{i}, r^{j}\right)\right)$.

Polarity

Let $P \subseteq \mathbb{R}^{N}$ be a radial polyhedron and $Q \subseteq \mathbb{R}^{N}$ its polar. There is a correspondance between
$\begin{array}{lll}\text { Extreme point } \bar{x} \in P & \text { and } & \text { Facet of } Q: \bar{x}^{T} a \geq 1 \\ \text { Extreme ray } \bar{x} \in P & \text { and } & \text { Facet of } Q: \bar{x}^{T} a \geq 0\end{array}$
Facet of $P: \bar{a}^{T} x \geq 1$ and Extreme point $\bar{a} \in Q$
Facet of $P: \bar{a}^{T} x \geq 0 \quad$ and \quad Extreme ray $\bar{a} \in Q$

Polarity, applied

- We have a polyhedron

$$
\operatorname{conv}\left(P_{I}\right)=\operatorname{conv}\left(\left\{(x, s) \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{n} \mid x=f+\sum_{j} r^{j} s_{j}\right\}\right)
$$

Extreme point $\bar{x} \in \operatorname{conv}\left(P_{I}\right)$
Facet of $Q: \bar{x}^{T} \alpha \geq 1$
Extreme ray $\bar{x} \in \operatorname{conv}\left(P_{I}\right)$
Facet of $Q: \bar{x}^{T} \alpha \geq 0$

Facet of $\operatorname{conv}\left(P_{I}\right): \bar{\alpha}^{T} x \geq 1$
Facet of $\operatorname{conv}\left(P_{I}\right): \bar{\alpha}^{T} x \geq 0$
Extreme point $\bar{\alpha} \in Q$
Extreme ray $\bar{\alpha} \in Q$

Polarity, applied

- We have a polyhedron

$$
\operatorname{conv}\left(P_{I}\right)=\operatorname{conv}\left(\left\{(x, s) \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{n} \mid x=f+\sum_{j} r^{j} s_{j}\right\}\right)
$$

- $\operatorname{conv}\left(P_{I}\right) \subseteq \mathbb{R}^{2+n}$ is of dimensionality n.
- We know the extreme points and rays of $\operatorname{conv}\left(P_{I}\right)$.
$\begin{array}{ll}\text { Extreme point } \bar{x} \in \operatorname{conv}\left(P_{I}\right) & \text { Facet of } Q: \bar{x}^{T} \alpha \geq 1 \\ \text { Extreme ray } \bar{x} \in \operatorname{conv}\left(P_{I}\right) & \text { Facet of } Q: \bar{x}^{T} \alpha \geq 0\end{array}$
Facet of $\operatorname{conv}\left(P_{I}\right): \bar{\alpha}^{T} x \geq 1$
Facet of $\operatorname{conv}\left(P_{I}\right): \bar{\alpha}^{T} x \geq 0$

Extreme point $\bar{\alpha} \in Q$
Extreme ray $\bar{\alpha} \in Q$

Polarity, applied

- We have a polyhedron

$$
\operatorname{conv}\left(P_{I}\right)=\operatorname{conv}\left(\left\{(x, s) \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{n} \mid x=f+\sum_{j} r^{j} s_{j}\right\}\right)
$$

- $\operatorname{conv}\left(P_{I}\right) \subseteq \mathbb{R}^{2+n}$ is of dimensionality n.
- We know the extreme points and rays of $\operatorname{conv}\left(P_{I}\right)$.
- We can build the polar $Q \subseteq \mathbb{R}^{n}$ of $\operatorname{conv}\left(P_{I}\right)$.

Extreme point $\bar{x} \in \operatorname{conv}\left(P_{I}\right)$	\longrightarrow	Facet of $Q: \bar{x}^{T} \alpha \geq 1$
Extreme ray $\bar{x} \in \operatorname{conv}\left(P_{I}\right)$	\longrightarrow	Facet of $Q: \bar{x}^{T} \alpha \geq 0$

Facet of $\operatorname{conv}\left(P_{I}\right): \bar{\alpha}^{T} x \geq 1$
Facet of $\operatorname{conv}\left(P_{I}\right): \bar{\alpha}^{T} x \geq 0$
Extreme point $\bar{\alpha} \in Q$
Extreme ray $\bar{\alpha} \in Q$

Polarity, applied

- We have a polyhedron

$$
\operatorname{conv}\left(P_{I}\right)=\operatorname{conv}\left(\left\{(x, s) \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{n} \mid x=f+\sum_{j} r^{j} s_{j}\right\}\right)
$$

- $\operatorname{conv}\left(P_{I}\right) \subseteq \mathbb{R}^{2+n}$ is of dimensionality n.
- We know the extreme points and rays of $\operatorname{conv}\left(P_{I}\right)$.
- We can build the polar $Q \subseteq \mathbb{R}^{n}$ of $\operatorname{conv}\left(P_{I}\right)$.
- We can optimize over Q

Extreme point $\bar{x} \in \operatorname{conv}\left(P_{I}\right)$	\longrightarrow	Facet of $Q: \bar{x}^{T} \alpha \geq 1$
Extreme ray $\bar{x} \in \operatorname{conv}\left(P_{I}\right)$	\longrightarrow	Facet of $Q: \bar{x}^{T} \alpha \geq 0$
	$\downarrow \downarrow$	
Facet of $\operatorname{conv}\left(P_{I}\right): \bar{\alpha}^{T} x \geq 1$		Extreme point $\bar{\alpha} \in Q$
Facet of $\operatorname{conv}\left(P_{I}\right): \bar{\alpha}^{T} x \geq 0$		Extreme ray $\bar{\alpha} \in Q$

Polarity, applied

- We have a polyhedron

$$
\operatorname{conv}\left(P_{I}\right)=\operatorname{conv}\left(\left\{(x, s) \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{n} \mid x=f+\sum_{j} r^{j} s_{j}\right\}\right)
$$

- $\operatorname{conv}\left(P_{I}\right) \subseteq \mathbb{R}^{2+n}$ is of dimensionality n.
- We know the extreme points and rays of $\operatorname{conv}\left(P_{I}\right)$.
- We can build the polar $Q \subseteq \mathbb{R}^{n}$ of $\operatorname{conv}\left(P_{I}\right)$.
- We can optimize over Q to find facets $\operatorname{conv}\left(P_{I}\right)$.

Extreme point $\bar{x} \in \operatorname{conv}\left(P_{I}\right)$	\longrightarrow	Facet of $Q: \bar{x}^{T} \alpha \geq 1$
Extreme ray $\bar{x} \in \operatorname{conv}\left(P_{I}\right)$	\longrightarrow	Facet of $Q: \bar{x}^{T} \alpha \geq 0$
	$\downarrow \downarrow$	

Facet of $\operatorname{conv}\left(P_{I}\right): \bar{\alpha}^{T} x \geq 1 \quad \longleftarrow \quad$ Extreme point $\bar{\alpha} \in Q$
Facet of $\operatorname{conv}\left(P_{I}\right): \bar{\alpha}^{T} x \geq 0 \longleftarrow \quad$ Extreme ray $\bar{\alpha} \in Q$

Finding facets of conv P_{I}

The polar of $\operatorname{conv}\left(P_{I}\right)$ is

$$
Q=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid \forall i, j, \forall x \in \mathcal{X}_{i j}, \quad s_{i}^{x} \alpha_{i}+s_{j}^{x} \alpha_{j} \geq 1\right\}
$$

Finding facets of conv P_{I}

The polar of $\operatorname{conv}\left(P_{I}\right)$ is

$$
Q=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid \forall i, j, \forall x \in \mathcal{X}_{i j}, \quad s_{i}^{x} \alpha_{i}+s_{j}^{x} \alpha_{j} \geq 1\right\}
$$

We find facets of $\operatorname{conv}\left(P_{I}\right)$ by choosing an objective function $c^{T} \alpha$ and optimizing over Q :

$$
\begin{aligned}
\min & c^{T} \alpha \\
\mathrm{s.t.} & s_{i}^{x} \alpha_{i}+s_{j}^{x} \alpha_{j} \geq 1, \quad \forall i, j, \forall x \in \mathcal{X}_{i j} \\
& \alpha \geq 0
\end{aligned}
$$

A.3. New developments

Complexity of writing the polar (1)

Complexity of writing the polar (1)

- For each cone, compute integer hull.

Cones: quadratic in the number of rays.

Complexity of writing the polar (1)

- For each cone, compute integer hull.
- For each vertex, write one constraint.

Cones: quadratic in the number of rays.
2. Vertices: polynomial (but possibly large) number in each cone.

Complexity of writing the polar (1)

- For each cone, compute integer hull.
- For each vertex, write one constraint.

1. Cones: quadratic in the number of rays.
2. Vertices: polynomial (but possibly large) number in each cone.

Complexity of writing the polar (1)

- For each cone, compute integer hull.
- For each vertex, write one constraint.

1. Cones: quadratic in the number of rays.
2. Vertices: polynomial (but possibly large) number in each cone.

The complexity of the polar - the intuition
$Q=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid \forall i, j, \forall x \in \mathcal{X}_{i j}\right.$,

$$
\left.s_{i}^{x} \alpha_{i}+s_{j}^{x} \alpha_{j} \geq 1\right\}
$$

The complexity of the polar - the intuition

$$
Q=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid \forall i, j, \forall x \in \mathcal{X}_{i j}\right.
$$

$$
\left.s_{i}^{x} \alpha_{i}+s_{j}^{x} \alpha_{j} \geq 1\right\}
$$

$$
Q^{\prime}=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid \forall i, \forall x \in \mathcal{X}_{i, i+1},\right.
$$

$$
\left.s_{i}^{x} \alpha_{i}+s_{i+1}^{x} \alpha_{i+1} \geq 1\right\}
$$

The complexity of the polar - the intuition

$$
Q=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid \forall i, j, \forall x \in \mathcal{X}_{i j},\right.
$$

$$
\left.s_{i}^{x} \alpha_{i}+s_{j}^{x} \alpha_{j} \geq 1\right\}
$$

0

$$
Q^{\prime}=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid \forall i, \forall x \in \mathcal{X}_{i, i+1},\right.
$$

$$
\left.s_{i}^{x} \alpha_{i}+s_{i+1}^{x} \alpha_{i+1} \geq 1\right\}
$$

The complexity of the polar - the intuition

$$
\begin{aligned}
& Q=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid \forall i, j, \forall x \in \mathcal{X}_{i j},\right. \\
& \left.s_{i}^{x} \alpha_{i}+s_{j}^{x} \alpha_{j} \geq 1\right\} \\
& Q^{\prime}=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid \forall i, \forall x \in \mathcal{X}_{i, i+1},\right. \\
& \bar{Q}=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid\right. \\
& \forall i, \forall x \in \mathcal{X}_{i, i+1}, \\
& s_{i}^{x} \alpha_{i}+s_{i+1}^{x} \alpha_{i+1}^{x} \geq 1 \\
& \forall i: r^{i} \in \operatorname{cone}\left(r^{i-1}, r^{i+1}\right),
\end{aligned}
$$

Note: $r^{j}=\lambda_{i}^{j} r^{i}+\lambda_{k}^{j} r^{k}$

The complexity of the polar - the intuition
$Q=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid \forall i, j, \forall x \in \mathcal{X}_{i j}\right.$,

$$
\left.s_{i}^{x} \alpha_{i}+s_{j}^{x} \alpha_{j} \geq 1\right\}
$$

$Q^{\prime}=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid \forall i, \forall x \in \mathcal{X}_{i, i+1}\right.$, $\left.s_{i}^{x} \alpha_{i}+s_{i+1}^{x} \alpha_{i+1} \geq 1\right\}$
$\bar{Q}=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid\right.$

$$
\begin{aligned}
& \forall i, \forall x \in \mathcal{X}_{i, i+1} \\
& s_{i}^{x} \alpha_{i}+s_{i+1}^{x} \alpha_{i+1} \geq 1 \\
& \forall i: r^{i} \in \operatorname{cone}\left(r^{i-1}, r^{i+1}\right),
\end{aligned}
$$

$$
\left.\alpha_{i} \leq \lambda_{i-1}^{i} \alpha_{i-1}+\lambda_{i+1}^{i} \alpha_{i+1}\right\}
$$

Note: $r^{j}=\lambda_{i}^{j} r^{i}+\lambda_{k}^{j} r^{k}$

The complexity of the polar - the intuition

$$
\begin{aligned}
& Q=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid \forall i, j, \forall x \in \mathcal{X}_{i j},\right. \\
& \left.s_{i}^{x} \alpha_{i}+s_{j}^{x} \alpha_{j} \geq 1\right\} \\
& Q^{\prime}=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid \forall i, \forall x \in \mathcal{X}_{i, i+1},\right. \\
& \bar{Q}=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid\right. \\
& \forall i, \forall x \in \mathcal{X}_{i, i+1}, \\
& s_{i}^{x} \alpha_{i}+s_{i+1}^{x} \alpha_{i+1} \geq 1 \\
& \left.\forall i: r_{i+1}^{x} \alpha_{i+1} \geq 1\right\} \\
& \left.\alpha_{i} \leq \lambda_{i-1}^{i} \alpha_{i-1}+\lambda_{i+1}^{i} \alpha_{i+1}\right\}
\end{aligned}
$$

- What is $Q \backslash \bar{Q}$?

The complexity of the polar - the theory

$$
\begin{aligned}
& Q=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid \forall i, j, \forall x \in \mathcal{X}_{i j}, \quad s_{i}^{x} \alpha_{i}+s_{j}^{x} \alpha_{j} \geq 1\right\} \\
& \bar{Q}=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid\right.
\end{aligned}
$$

$$
\forall i, \forall x \in \mathcal{X}_{i, i+1}, \quad s_{i}^{x} \alpha_{i}+s_{i+1}^{x} \alpha_{i+1} \geq 1
$$

$$
\left.\forall i: r^{i} \in \operatorname{cone}\left(r^{i-1}, r^{i+1}\right), \quad \alpha_{i} \leq \lambda_{i-1}^{i} \alpha_{i-1}+\lambda_{i+1}^{i} \alpha_{i+1}\right\} .
$$

$\bar{Q} \subseteq Q$, and all vertices of Q are in \bar{Q}.

The complexity of the polar - the theory

$$
\begin{aligned}
& Q=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid \forall i, j, \forall x \in \mathcal{X}_{i j}, \quad s_{i}^{x} \alpha_{i}+s_{j}^{x} \alpha_{j} \geq 1\right\} \\
& \bar{Q}=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid\right. \\
& \forall i, \forall x \in \mathcal{X}_{i, i+1}, \quad s_{i}^{x} \alpha_{i}+s_{i+1}^{x} \alpha_{i+1} \geq 1 \\
& \left.\forall i: r^{i} \in \operatorname{cone}\left(r^{i-1}, r^{i+1}\right), \quad \alpha_{i} \leq \lambda_{i-1}^{i} \alpha_{i-1}+\lambda_{i+1}^{i} \alpha_{i+1}\right\} .
\end{aligned}
$$

Theorem
$\bar{Q} \subseteq Q$, and all vertices of Q are in \bar{Q}.
\square

The complexity of the polar - the theory

$$
\begin{aligned}
& Q=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid \forall i, j, \forall x \in \mathcal{X}_{i j}, \quad s_{i}^{x} \alpha_{i}+s_{j}^{x} \alpha_{j} \geq 1\right\} \\
& \bar{Q}=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid\right.
\end{aligned}
$$

$$
\forall i, \forall x \in \mathcal{X}_{i, i+1}, \quad s_{i}^{x} \alpha_{i}+s_{i+1}^{x} \alpha_{i+1} \geq 1
$$

$$
\left.\forall i: r^{i} \in \operatorname{cone}\left(r^{i-1}, r^{i+1}\right), \quad \alpha_{i} \leq \lambda_{i-1}^{i} \alpha_{i-1}+\lambda_{i+1}^{i} \alpha_{i+1}\right\} .
$$

Theorem
$\bar{Q} \subseteq Q$, and all vertices of Q are in \bar{Q}.
Corollary
If $c>0, \begin{aligned} \text { min } & c^{T} \alpha \\ \text { s.t. } & \alpha \in Q\end{aligned} \quad$ and $\begin{aligned} \min & c^{T} \alpha \\ \text { s.t. } & \alpha \in \bar{Q}\end{aligned}$ share the same set of optimal solutions.

The complexity of the polar - the theory

$$
\begin{aligned}
& Q=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid \forall i, j, \forall x \in \mathcal{X}_{i j}, \quad s_{i}^{x} \alpha_{i}+s_{j}^{x} \alpha_{j} \geq 1\right\} \\
& \bar{Q}=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid\right.
\end{aligned}
$$

$$
\forall i, \forall x \in \mathcal{X}_{i, i+1}, \quad s_{i}^{x} \alpha_{i}+s_{i+1}^{x} \alpha_{i+1} \geq 1
$$

$$
\left.\forall i: r^{i} \in \operatorname{cone}\left(r^{i-1}, r^{i+1}\right), \quad \alpha_{i} \leq \lambda_{i-1}^{i} \alpha_{i-1}+\lambda_{i+1}^{i} \alpha_{i+1}\right\} .
$$

Theorem
$\bar{Q} \subseteq Q$, and all vertices of Q are in \bar{Q}.
Corollary
If $c>0, \begin{aligned} \min & c^{T} \alpha \\ \text { s.t. } & \alpha \in Q\end{aligned}$ and $\begin{aligned} \min & c^{T} \alpha \\ \text { s.t. } & \alpha \in \bar{Q}\end{aligned}$ share the same set of optimal solutions.
If $c_{i}<0$, then $\begin{aligned} \min & c^{T} \alpha \\ \text { s.t. } & \alpha \in Q\end{aligned}$ is unbounded.

Complexity of writing the polar (2)

- For each cone, compute integer hull.
- For each vertex, write one constraint.

1. Cones: quadratic linear in the number of rays.
2. Vertices: polynomial (but possibly large) number in each cone.

Complexity of writing the polar (2)

- For each cone, compute integer hull.
- For each vertex, write one constraint.

1. Cones: quadratic linear in the number of rays.
2. Vertices: polynomial (but possibly large) number in each cone.
3. In practice, generate the constraints of \bar{Q} by row generation.
A.4. Results

Computational results

	Average iter. per cut	Average time (ms) per cut
MIPLIB 3	3.1	1.8 ms
MIPLIB 2003	15.6	24.3 ms

Computational results

	Average iter. per cut	Average time (ms) per cut
MIPLIB 3	3.1	1.8 ms
MIPLIB 2003	15.6	24.3 ms

	one-row		two-row (split sets)		two-row	
	Average sep. cuts	Average \%gc	Average sep. cuts	Average \% gc	Average sep. cuts	Average \%gc
MIPLIB 3	695.0	29.4 \%	39.7	34.8 \%	232.7	36.2 \%
MIPLIB 2003	4465.3	31.3 \%			600.7	34.5 \%

Computational results

	Average iter. per cut	Average time (ms) per cut
MIPLIB 3	3.1	1.8 ms
MIPLIB 2003	15.6	24.3 ms

	one-row		two-row (split sets)		two-row	
	Average	Average	Average	Average	Average	Average
	sep. cuts	$\%$ gc	sep. cuts	$\%$ gc	sep. cuts	$\%$ gc
MIPLIB 3	695.0	29.4%	39.7	34.8%	232.7	36.2%
MIPLIB 2003	4465.3	31.3%	465.5	33.0%	600.7	34.5%

Conclusions

- We have a fast separation for two-row cuts.

- These cuts are the strongest for the two-row model.

- They close more gap than one-row (intersection) cuts.

Conclusions

- We have a fast separation for two-row cuts.
- These cuts are the strongest for the two-row model.
* They close more gap than one-row (intersection) cuts.
- they do not close much more gap than two-row intersection cuts from split sets

Conclusions

- We have a fast separation for two-row cuts.
- These cuts are the strongest for the two-row model.
- They close more gap than one-row (intersection) cuts.
- they do not close much more gap than two-row intersection cuts from split sets.

Conclusions

- We have a fast separation for two-row cuts.
- These cuts are the strongest for the two-row model.
- They close more gap than one-row (intersection) cuts.

But

- they do not close much more gap than two-row intersection cuts from split sets.

B. Separation over arbitrary MIXED-INTEGER SETS

Motivations

- We want to test stronger relaxations
- We still want exact separation

B.1. Separation method

Problem

Given

- a relaxation P of mixed-integer set in \mathbb{R}^{n},
- a point $x^{*} \in \mathbb{R}^{n}$,

is a valid inequality for P that separates x^{*},

or show that $x^{*} \in \operatorname{conv}(P)$

Problem

Given

- a relaxation P of mixed-integer set in \mathbb{R}^{n},
- a point $x^{*} \in \mathbb{R}^{n}$,
find $\left(\alpha, \alpha_{0}\right) \in \mathbb{R}^{n+1}$ such that

$$
\alpha^{T} x \geq \alpha_{0}
$$

is a valid inequality for P that separates x^{*},
or show that $x^{*} \in \operatorname{conv}(P)$.

General framework

Solve the optimization problem

$$
\begin{array}{cl}
\min & x^{* T} \alpha \\
\text { s.t. } & x^{T} \alpha \geq \alpha_{0} \quad \text { for all } x \in P \tag{Sep.LP}
\end{array}
$$

Let $\left(\bar{\alpha}, \bar{\alpha}_{0}\right)$ be an optimal solution.
If $x^{* T} \bar{\alpha}<\bar{\alpha}_{0}, \quad$ then $\left(\bar{\alpha}, \bar{\alpha}_{0}\right)$ separates x^{*}.
If $x^{* T} \bar{\alpha} \geq \bar{\alpha}_{0}, \quad$ then $x^{*} \in \operatorname{conv}(P)$.

General framework

Solve the optimization problem

$$
\begin{array}{cl}
\min & x^{* T} \alpha \\
\text { s.t. } & x^{T} \alpha \geq \alpha_{0} \quad \text { for all } x \in P \\
& <\text { norm. }>
\end{array}
$$

(Sep. LP)

Let $\left(\bar{\alpha}, \bar{\alpha}_{0}\right)$ be an optimal solution.
If $x^{* T} \bar{\alpha}<\bar{\alpha}_{0}, \quad$ then $\left(\bar{\alpha}, \bar{\alpha}_{0}\right)$ separates x^{*}.
If $x^{* T} \bar{\alpha} \geq \bar{\alpha}_{0}, \quad$ then $x^{*} \in \operatorname{conv}(P)$.

Row generation

1. Consider the relaxation of the separation problem

$$
\begin{array}{cc}
\min & x^{* T} \alpha \\
\text { s.t. } & x^{T} \alpha \geq \alpha_{0} \quad \text { for all } x \in S \subseteq P \\
<\text { norm. }>
\end{array}
$$

Let $\left(\bar{\alpha}, \bar{\alpha}_{0}\right)$ be an optimal solution.

Row generation

1. Consider the relaxation of the separation problem

$$
\begin{array}{cc}
\min & x^{* T} \alpha \\
\text { s.t. } & x^{T} \alpha \geq \alpha_{0} \quad \text { for all } x \in S \subseteq P \\
<\text { norm. }>
\end{array}
$$

Let $\left(\bar{\alpha}, \bar{\alpha}_{0}\right)$ be an optimal solution.
2. Now solve the MIP

$$
\begin{array}{cl}
\min & \bar{\alpha}^{T} x \\
\text { s.t. } & x \subseteq P \tag{slave}
\end{array}
$$

and let x^{p} be a finite optimal solution.

Row generation

1. Consider the relaxation of the separation problem

$$
\begin{array}{cc}
\min & x^{* T} \alpha \\
\text { s.t. } & x^{T} \alpha \geq \alpha_{0} \quad \text { for all } x \in S \subseteq P \\
\text { <norm. }>
\end{array}
$$

Let $\left(\bar{\alpha}, \bar{\alpha}_{0}\right)$ be an optimal solution.
2. Now solve the MIP

$$
\begin{array}{cl}
\min & \bar{\alpha}^{T} x \\
\text { s.t. } & x \subseteq P \tag{slave}
\end{array}
$$

and let x^{p} be a finite optimal solution.

$$
\begin{aligned}
& \text { If } \bar{\alpha}^{T} x^{p} \geq \bar{\alpha}_{0}, \quad \text { then }\left(\bar{\alpha}, \bar{\alpha}_{0}\right) \text { is valid for } P . \\
& \text { If } \bar{\alpha}^{T} x^{p}<\bar{\alpha}_{0}, \quad \text { then } S:=S \cup\left\{x^{p}\right\} .
\end{aligned}
$$

Computational example

Instance: bell3a
Constraints: 123
Variables: 133 (71 integer: 32 general, 39 binaries)
Models: 82 five-row models read from an optimal tableau
Cuts: 37 (17 tight at the end)
Gap closed: 59.02% (from 39.03% by GMIs)

Time:	1615.70 s
Iterations:	107647

Two-phases: Phase one

Two-phases: Phase one

Two-phases: Phase two

Computational example (2-phases)

(bell3a, 82 five-row models, 37 cuts, $59.02 \% \mathrm{gc}$)

	original	2-phases
Time:	1615.70 s	161.15 s
Iterations:	107647	23822

Computational example (2-phases)

(bell3a, 82 five-row models, 37 cuts, $59.02 \% \mathrm{gc}$)

	original	2-phases
Time:	1615.70 s	161.15 s
Iterations:	107647	23822

Lifting binary variables

Lifting binary variables

Lifting binary variables

Computational example (lifting binaries)

(bell3a, 82 five-row models, 37 cuts, $59.02 \% \mathrm{gc}$)

	original	2-phases	lifting
Time:	1615.70 s	161.15 s	136.54 s
Iterations:	107647	23822	23231

Computational example (lifting binaries)

(bell3a, 82 five-row models, 37 cuts, $59.02 \% \mathrm{gc}$)

	original	2-phases	lifting
Time:	1615.70 s	161.15 s	136.54 s
Iterations:	107647	23822	23231

Sequential phase-2 ("phase-S")

Sequential phase-2 ("phase-S")

Sequential phase-2 ("phase-S")

Sequential phase-2 ("phase-S")

Computational example (phase S)

(bell3a, 82 five-row models, 37 cuts, $59.02 \% \mathrm{gc}$)

	original	2-phases	lifting	phase S
Time:	1615.70 s	161.15 s	136.54 s	5.84 s
Iterations:	107647	23822	23231	2497

Computational example (phase S)

(bell3a, 82 five-row models, 37 cuts, $59.02 \% \mathrm{gc}$)

	original	2-phases	lifting	phase S
Time:	1615.70 s	161.15 s	136.54 s	5.84 s
Iterations:	107647	23822	23231	2497

Computational example (solver tricks)

(bell3a, 82 five-row models, 37 cuts, $59.02 \% \mathrm{gc}$)

	original	2-phases	lifting	phase S	cb
Time:	1615.70 s	161.15 s	136.54 s	5.84 s	4.65 s
Iterations:	107647	23822	23231	2497	2497

Computational example (solver tricks)

(bell3a, 82 five-row models, 37 cuts, $59.02 \% \mathrm{gc}$)

	original	2-phases	lifting	phase S	cb
Time:	1615.70 s	161.15 s	136.54 s	5.84 s	4.65 s
Iterations:	107647	23822	23231	2497	2497

Computational example (summary)

(bell3a, 82 five-row models, 37 cuts, $59.02 \% \mathrm{gc}$)

	original	2-phases	lifting	phase S	cb
Time:	$347 \times$	$35 \times$	$29 \times$	$1.26 \times$	1
	1615.70 s	161.15 s	136.54 s	5.84 s	4.65 s
Iterations:	107647	23822	23231	2497	2497
	$43 \times$	$10 \times$	$9 \times$	1	1

B.2. Application to two-row relaxations

Two-row intersection cuts + strengthening

$$
\begin{array}{ll}
\text { ل}: & \text { keep } \\
\text { B: } & \text { keep binding } \\
\times: & \text { drop }
\end{array}
$$

Two-row intersection cuts + strengthening

$$
\begin{array}{ll}
\text { ل: } & \text { keep } \\
\text { B: } & \text { keep binding } \\
\times: & \text { drop }
\end{array}
$$

Two-row intersection cuts + strengthening

	basic			nonbasic	
	$\in \mathbb{Z}$	bnd.		$\in \mathbb{Z}$	bnd.
P_{I}	$\sqrt{ }$	\times		\times	B
S-free	$\sqrt{ }$	$\sqrt{ }$		\times	B
lifting					B
$P_{\text {IU }}$					

$$
\begin{array}{ll}
\hline \text { ل: } & \text { keep } \\
\text { B: } & \text { keep binding } \\
\times: & \text { drop }
\end{array}
$$

Two-row intersection cuts + strengthening

	basic			nonbasic	
	$\in \mathbb{Z}$	bnd.		$\in \mathbb{Z}$	bnd.
P_{I}	$\sqrt{ }$	\times		\times	B
S-free	$\sqrt{ }$	$\sqrt{ }$		\times	B
lifting	$\sqrt{ }$	\times		$\sqrt{ }$	B

$$
\begin{array}{ll}
\text { ل}: & \text { keep } \\
\text { B: } & \text { keep binding } \\
\times: & \text { drop }
\end{array}
$$

Two-row intersection cuts + strengthening

	basic			nonbasic	
	$\in \mathbb{Z}$	bnd.		$\in \mathbb{Z}$	bnd.
P_{I}	$\sqrt{ }$	\times		\times	B
S-free	$\sqrt{ }$	$\sqrt{ }$		\times	B
lifting	$\sqrt{ }$	\times		$\sqrt{ }$	B
$P_{I U}$	$\sqrt{ }$	\times		\times	$\sqrt{ }$

$$
\begin{array}{ll}
\text { ل }: & \text { keep } \\
\text { B: } & \text { keep binding } \\
\times: & \text { drop }
\end{array}
$$

Two-row intersection cuts + strengthening

	basic			nonbasic	
	$\in \mathbb{Z}$	bnd.		$\in \mathbb{Z}$	bnd.
P_{I}	$\sqrt{ }$	\times		\times	B
S-free	$\sqrt{ }$	$\sqrt{ }$		\times	B
lifting	$\sqrt{ }$	\times		$\sqrt{ }$	B
$P_{I U}$	$\sqrt{ }$	\times		\times	$\sqrt{ }$
full 2-row	$\sqrt{ }$	$\sqrt{ }$		$\sqrt{ }$	$\sqrt{ }$

$$
\begin{array}{ll}
\text { ل }: & \text { keep } \\
\text { B: } & \text { keep binding } \\
\times: & \text { drop }
\end{array}
$$

Two-row intersection cuts and strengthenings

51 common instances:

	cuts	$\mathrm{gc} \%$	exact
GMI	28.240	22.46%	all
P_{I}	29.420	27.65%	42
S-free	38.380	30.22%	29
lifting	22.700	27.35%	10
$P_{I U}$	42.640	28.56%	25
full 2-row	55.500	35.66%	22

Two-row intersection cuts and strengthenings

51 common instances:

	cuts	$\mathrm{gc} \%$	exact
GMI	28.240	22.46%	all
P_{I}	29.420	27.65%	42
S-free	38.380	30.22%	29
lifting	22.700	27.35%	10
$P_{I U}$	42.640	28.56%	25
full 2-row	55.500	35.66%	22

Two-row intersection cuts and strengthenings

51 common instances:

	cuts	$\mathrm{gc} \%$	exact
GMI	28.240	22.46%	all
P_{I}	29.420	27.65%	42
S-free	38.380	30.22%	29
lifting	22.700	27.35%	10
$P_{I U}$	42.640	28.56%	25
full 2-row	55.500	35.66%	22

Two-row intersection cuts and strengthenings

51 common instances:

cuts $\quad \mathrm{gc} \%$	exact
GMI 88.240 22 $\%$	all
P_{I} 2, ${ }^{4} 20 \quad .65 \%$	42
S-free 38.3\% 30.22\%	29
lifting 22700 27.35\%	10
$P_{I U} \quad .640 \quad 2.56 \%$	25
full 2-rov $55.500 \quad 35.0$ \%	22

Two-row intersection cuts and strengthenings

15 common instances:

	cuts	$\mathrm{gc} \%$	exact
GMI	20.667	26.541	all
P_{I}	20.933	33.535	all
S-free	25.400	35.229	all
$P_{I U}$	36.600	36.257	all
full 2-row	57.267	43.956	all

Two-row intersection cuts and strengthenings

7 common instances:
[bell5, blend2, egout, khb05250, misc03, misc07, set1ch]

	cuts	gc\%	exact
GMI	25.571	24.744	all
P_{I}	25.143	33.641	all
S-free	28.714	33.836	all
lifting	25.571	33.716	all
$P_{I U}$	47.857	37.531	all
full 2-row	48.000	37.583	all

Bases

- We depend on a specific optimal basis

- Will the gap closed by two-row cuts survive more GMIs?

Bases

- We depend on a specific optimal basis - Will the gap closed by two-row cuts survive more GMIs?

Bases

- We depend on a specific optimal basis
- Will the gap closed by two-row cuts survive more GMIs?

Relax and cut: results

43 common instances:

	cuts	gc\%	exact
GMI	24.814	23.282	all
2-row i.c.	31.884	28.838	42
full 2-row	62.140	36.080	22
relax\&cut GMI	60.372	34.970	all
relax\&cut 2-row i.c.	63.163	41.951	37
relax\&cut full 2-row	76.767	47.277	12

More rows: Computing time

instances with result, and instances with exact separation

geometric mean of time (on 42 common instances)

More rows: Gap closed

number of cuts generated (on 42 common instances)

average \%gc
(on 42 common instances)

Overall summary

- a (quick) two-row intersection cut separator
- assessment: strength of the two-row model
- a (slow) generic arbitrary-MIP cut separator

Overall summary

- a (quick) two-row intersection cut separator
- assessment: strength of the two-row model
- a (slow) generic arbitrary-MIP cut separator
- assessment: strength of multi-row model and variants

Overall summary

- a (quick) two-row intersection cut separator
- assessment: strength of the two-row model
- a (slow) generic arbitrary-MIP cut separator
- assessment: strength of multi-row model and variants

Overall summary

- a (quick) two-row intersection cut separator
- assessment: strength of the two-row model
- a (slow) generic arbitrary-MIP cut separator
- assessment: strength of multi-row model and variants

Conclusions

Multi-row cuts:

- Number of rows: few or almost all
- Intersection cuts: need to apply all strengthenings

Conclusions

Multi-row cuts:

- Number of rows: few or almost all
- Intersection cuts: need to apply all strengthenings
\longrightarrow
///////

|||||||

The integer hull

Adding all valid inequalities for (MIP), we obtain:
$\operatorname{conv}\{x: x \in(\mathrm{MIP})\}$

In practice: much harder

The integer hull

Adding all valid inequalities for (MIP), we obtain:
$\operatorname{conv}\{x: x \in(\mathrm{MIP})\}$
In theory: as hard as solving (MIP)

In practice: much harder

The integer hull

Adding all valid inequalities for (MIP), we obtain:
$\operatorname{conv}\{x: x \in(\mathrm{MIP})\}$
In theory: as hard as solving (MIP)

In practice: much harder

Can we avoid the integer hulls $\mathcal{X}_{i j}$?

$$
\bar{Q}=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid\right.
$$

$$
\forall i, \forall x \in \mathcal{X}_{i, i+1},
$$

$$
\forall i: r^{i} \in \operatorname{cone}\left(r^{i-1}, r^{i+1}\right),
$$

$$
s_{i}^{x} \alpha_{i}+s_{i+1}^{x} \alpha_{i+1} \geq 1
$$

$$
\left.\alpha_{i} \leq \lambda_{i-1}^{i} \alpha_{i-1}+\lambda_{i+1}^{i} \alpha_{i+1}\right\}
$$

Can we avoid the integer hulls $\mathcal{X}_{i j}$?

$$
\bar{Q}=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid\right.
$$

$$
\forall i, \forall x \in \mathcal{X}_{i, i+1},
$$

$$
s_{i}^{x} \alpha_{i}+s_{i+1}^{x} \alpha_{i+1} \geq 1
$$

$\forall i: r^{i} \in \operatorname{cone}\left(r^{i-1}, r^{i+1}\right)$,

$$
\left.\alpha_{i} \leq \lambda_{i-1}^{i} \alpha_{i-1}+\lambda_{i+1}^{i} \alpha_{i+1}\right\}
$$

$\bar{Q}(S)=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid\right.$

$$
\begin{array}{ll}
\forall i, \forall x \in S \cap\left(f+\operatorname{cone}\left(r^{i}, r^{i+1}\right)\right), & s_{i}^{x} \alpha_{i}+s_{i+1}^{x} \alpha_{i+1} \geq 1 \\
\forall i: r^{i} \in \operatorname{cone}\left(r^{i-1}, r^{i+1}\right), & \left.\alpha_{i} \leq \lambda_{i-1}^{i} \alpha_{i-1}+\lambda_{i+1}^{i} \alpha_{i+1}\right\},
\end{array}
$$

with $S \subset \mathbb{Z}^{2}$.

Separation algorithm

Integer pair extension

Integer pair extension

Integer pair extension

Integer pair extension

The oracle

Find an integer point in interior $\left(L_{\alpha}\right)$ or prove that L_{α} is lattice-free.

The oracle

Find an integer point in interior $\left(L_{\alpha}\right)$ or prove that L_{α} is lattice-free.

The oracle

Find an integer point in interior $\left(L_{\alpha}\right)$ or prove that L_{α} is lattice-free.

- possible in polynomial time for any fixed dimension d
(Barvinok's algorithm)

The oracle

Find an integer point in interior $\left(L_{\alpha}\right)$ or prove that L_{α} is lattice-free.

- possible in polynomial time for any fixed dimension d
(Barvinok's algorithm)
- but $d=2$

The oracle

Find an integer point in interior $\left(L_{\alpha}\right)$ or prove that L_{α} is lattice-free.

- possible in polynomial time for any fixed dimension d
(Barvinok's algorithm)
- but $d=2$
- we know $S \cap L_{\alpha}$

The oracle

Find an integer point in interior $\left(L_{\alpha}\right)$ or prove that L_{α} is lattice-free.

- possible in polynomial time for any fixed dimension d
(Barvinok's algorithm)
- but $d=2$
- we know $S \cap L_{\alpha}$
- closed-form formula?

The oracle: $\operatorname{conv}(T)$

Find an integer point in interior $\left(L_{\alpha}\right)$ or prove that L_{α} is lattice-free.

1. Consider the convex hull $\operatorname{conv}(T)$ where $T:=S \cap$ boundary $\left(L_{\alpha}\right)$.

The oracle: $\operatorname{conv}(T)$

Find an integer point in interior $\left(L_{\alpha}\right)$ or prove that L_{α} is lattice-free.

1. Consider the convex hull $\operatorname{conv}(T)$ where $T:=S \cap$ boundary $\left(L_{\alpha}\right)$.

- triangularize $\operatorname{conv}(T)$

0

0

The oracle: $\operatorname{conv}(T)$

Find an integer point in interior $\left(L_{\alpha}\right)$ or prove that L_{α} is lattice-free.

1. Consider the convex hull $\operatorname{conv}(T)$ where $T:=S \cap$ boundary $\left(L_{\alpha}\right)$.

- triangularize $\operatorname{conv}(T)$
- find integer points on integer segments and integer triangles

The oracle: $\operatorname{conv}(T)$, continued
Let Δ be $\operatorname{conv}(0, u, v)$ with $u, v \in \mathbb{Z}$ and $\operatorname{gcd}\left(u_{1}, u_{2}\right)=\operatorname{gcd}\left(v_{1}, v_{2}\right)=1$.

$$
\left\{\frac{\lambda}{\operatorname{det}([u \mid v])} u+\frac{\mu}{\operatorname{det}([u \mid v])} v: \lambda, \mu \in \mathbb{Z}_{+}, 0<\lambda+\mu<\operatorname{det}([u \mid v])\right\}
$$

It is enough to solve the diophantine system

The oracle: $\operatorname{conv}(T)$, continued
Let Δ be $\operatorname{conv}(0, u, v)$ with $u, v \in \mathbb{Z}$ and $\operatorname{gcd}\left(u_{1}, u_{2}\right)=\operatorname{gcd}\left(v_{1}, v_{2}\right)=1$.

$$
\left\{\frac{\lambda}{\operatorname{det}([u \mid v])} u+\frac{\mu}{\operatorname{det}([u \mid v])} v: \lambda, \mu \in \mathbb{Z}_{+}, 0<\lambda+\mu<\operatorname{det}([u \mid v])\right\}
$$

Prop.: Δ has an interior lattice point with $\mu=1$, or is lattice-free.

It is enough to solve the diophantine system

The oracle: $\operatorname{conv}(T)$, continued

Let Δ be $\operatorname{conv}(0, u, v)$ with $u, v \in \mathbb{Z}$ and $\operatorname{gcd}\left(u_{1}, u_{2}\right)=\operatorname{gcd}\left(v_{1}, v_{2}\right)=1$.

$$
\left\{\frac{\lambda}{\operatorname{det}([u \mid v])} u+\frac{\mu}{\operatorname{det}([u \mid v])} v: \lambda, \mu \in \mathbb{Z}_{+}, 0<\lambda+\mu<\operatorname{det}([u \mid v])\right\}
$$

Prop.: Δ has an interior lattice point with $\mu=1$, or is lattice-free.

It is enough to solve the diophantine system

$$
\left\{\begin{array}{l}
\lambda u_{1}+v_{1}=k_{1} \operatorname{det}([u \mid v]) \\
\lambda u_{2}+v_{2}=k_{2} \operatorname{det}([u \mid v])
\end{array}, \lambda, k_{1}, k_{2} \in \mathbb{Z}\right.
$$

The oracle: interior $\left(L_{\alpha}\right)$

2. Assuming $\operatorname{conv}(T)$ lattice-free,

Prop.: It is enough to check 2 or 3 specific integer points:

Solver tricks: callbacks

Solving slave MIPs

$$
\begin{array}{cl}
\min & \bar{\alpha}^{T} x \\
\text { s.t. } & x \subseteq P
\end{array}
$$

Solver tricks: callbacks

Solving slave MIPs

$$
\begin{array}{cl}
\min & \bar{\alpha}^{T} x \\
\text { s.t. } & x \subseteq P,
\end{array}
$$

- Feasible solution \hat{x} with $\bar{\alpha}^{T} \hat{x}<\bar{\alpha}_{0}$
$\rightarrow \hat{x}$ can be added to S.
- Dual bound \underline{z} reaches $\bar{\alpha}_{0}$ $\rightarrow\left(\bar{\alpha}, \bar{\alpha}_{0}\right)$ is valid for P.

Solver tricks: callbacks

Solving slave MIPs

$$
\begin{array}{cl}
\min & \bar{\alpha}^{T} x \\
\text { s.t. } & x \subseteq P,
\end{array}
$$

- Feasible solution \hat{x} with $\bar{\alpha}^{T} \hat{x}<\bar{\alpha}_{0}$
$\rightarrow \hat{x}$ can be added to S.
- Dual bound \underline{z} reaches $\bar{\alpha}_{0}$,
$\rightarrow\left(\bar{\alpha}, \bar{\alpha}_{0}\right)$ is valid for P.

Two-row relaxation: which models?

- We are still far from a closure
- What reasonable set of two-models can we select? \rightarrow Al' mode's read' from a simplex ta'bleau $\rightarrow O\left(m^{2}\right)$ two-row models

Two-row relaxation: which models?

- We are still far from a closure
- What reasonable set of two-models can we select?
\rightarrow All models read from a simplex tableau $\rightarrow O\left(m^{2}\right)$ two-row models

Two-row relaxation: which models?

- We are still far from a closure
- What reasonable set of two-models can we select?
\rightarrow All models read from a simplex tableau
$\rightarrow O\left(m^{2}\right)$ two-row models

"all" two-row models: separation loop

Let $x^{*} \leftarrow$ LP optimium
Read the two-row models from optimal tableau.
Read and add GMIs from that tableau.
do \{
Let $x^{*} \leftarrow$ new LP optimum. Separate x^{*} with the two-row models.
$\}$ while (cuts were found).

"all" two-row models: separation loop

Let $x^{*} \leftarrow$ LP optimium
Read the two-row models from optimal tableau.
Read and add GMIs from that tableau.
do \{
Let $x^{*} \leftarrow$ new LP optimum. Separate x^{*} with the two-row models.
$\}$ while (cuts were found).

"all" two-row models: separation loop

Let $x^{*} \leftarrow$ LP optimium
Read the two-row models from optimal tableau.
Read and add GMIs from that tableau.
do \{
Let $x^{*} \leftarrow$ new LP optimum. Separate x^{*} with the two-row models.
$\}$ while (cuts were found).

"all" two-row models: results

Computations on the 62 MIPLIB 3.0 (preprocessed) instances for which
(a). the integrality gap is not zero, and
(b). an optimal MIP solution is known.

"all" two-row models: results

We have a result for $55 / 62$ instances (4 numerical, 3 memory).

"all" two-row models: results

We have a result for $55 / 62$ instances (4 numerical, 3 memory).

	cuts	gc\%
GMI	24.800	22.60%
All 2-row	72.382	37.49%

For 13 instances, the separation is exact.

"all" two-row models: results

We have a result for $55 / 62$ instances (4 numerical, 3 memory).

	cuts	gc\%
GMI	24.800	22.60%
All 2-row	72.382	37.49%

For 13 instances, the separation is exact.

Heuristic selection of two-row models

Issue:

- $O\left(m^{2}\right)$ is already a large number of models

Rationale:
 - MIPLIB models are mostly sparse
 - Multi-cuts from rows with no common support are linear
 combinations of the corresponding one-row cuts

Heuristic selection of two-row models

Issue:

- $O\left(m^{2}\right)$ is already a large number of models

Hypothesis:

- Not all models are necessary to achieve good separation Rationale: * MIPL'IB models are mostly sparse - Multi-cuts from rows with no common support are linear combinations of the corresponding one-row cuts

Heuristic selection of two-row models

Issue:

- $O\left(m^{2}\right)$ is already a large number of models

Hypothesis:

- Not all models are necessary to achieve good separation

Rationale:

- MIPLIB models are mostly sparse
- Multi-cuts from rows with no common support are linear combinations of the corresponding one-row cuts

Heuristic selection of two-row models: results

With an arbitrary limit of m two-row models, we have a result for $58 / 62$ instances (1 numerical, 3 memory).

On the 55 common results,

For 25 instances, the separation is exact.

Heuristic selection of two-row models: results

With an arbitrary limit of m two-row models, we have a result for $58 / 62$ instances (1 numerical, 3 memory).

On the 55 common results,

	cuts	gc\%
GMI	24.800	22.60%
All 2-row	72.382	37.49%
Heuristic	57.418	35.19%

Heuristic selection of two-row models: results

With an arbitrary limit of m two-row models, we have a result for $58 / 62$ instances (1 numerical, 3 memory).

On the 55 common results,

	cuts	gc\%
GMI	24.800	22.60%
All 2-row	72.382	37.49%
Heuristic	57.418	35.19%

For 25 instances, the separation is exact.

Polarity for general polyhedra: Conify

Polarity for general polyhedra: Conify

Polarity for general polyhedra: Conify

Polyhedron		Polyhedral cone
P	\Leftrightarrow	P^{+}
vertex v	\Leftrightarrow	extreme ray $(v,-1)$
extreme ray r	\Leftrightarrow	$(l, 0)$ in the lineality space
l in the lineality space	\Leftrightarrow	
facet-defining $\alpha^{T} x \geq \alpha_{0}$	\Leftrightarrow	facet-defining $\alpha^{T} x+\alpha_{0} x_{0} \geq 0$
valid $\alpha^{T} x=\alpha_{0}$	\Leftrightarrow	valid $\alpha^{T} x+\alpha_{0} x_{0}=0$

Conify: P is a polytope

Note: $P=\operatorname{proj}_{x}\left(P^{+} \cap\left\{x_{0}=-1\right\}\right)$.
$P^{+}=\left\{\left(x, x_{0}\right) \in R^{n+1}: x_{0} \leq 0, x \in-x_{0} P\right\}$

Conify: P is a general polyhedron

Note: $P=\operatorname{proj}_{x}\left(P^{+} \cap\left\{x_{0}=-1\right\}\right)$.
$P^{+}=\left\{\left(x, x_{0}\right) \in R^{n+1}: x_{0} \leq 0, " x \in-x_{0} P+\operatorname{recc}(P)^{\prime \prime}\right\}$

Polarity for full-dimensional polyhedral cones

Polarity for full-dimensional polyhedral cones

Q is the polar of $P^{+} \quad \Leftrightarrow \quad P^{+}$is the polar of Q

Polarity for full-dimensional polyhedral cones

Q is the polar of $P^{+} \quad \Leftrightarrow \quad P^{+}$is the polar of Q
facet-defining $\beta^{T} x \geq 0 \quad \Leftrightarrow \quad$ extreme ray β
valid $\gamma^{T} x=0 \quad \Leftrightarrow \gamma$ in the lineality space

Going back to general (full-dimensional) polyhedra

Polyhedron	Polyhedral cone	Polar of P^{+}
P	P^{+}	Q
vert. v	ray $(v,-1)$	$v^{T} \alpha-\alpha_{0} \geq 0$
ray r	ray $(v, 0)$	$r^{T} \alpha \geq 0$
l in lin.sp.	$(l, 0)$ in lin.sp.	$l^{T} \alpha=0$
$\alpha^{T} x \geq \alpha_{0}$	$\alpha^{T} x+\alpha_{0} x_{0} \geq 0$	ray $\left(\alpha, \alpha_{0}\right)$
$\alpha^{T} x=\alpha_{0}$	$\alpha^{T} x+\alpha_{0} x_{0}=0$	$\left(\alpha, \alpha_{0}\right)$ in lin.sp.

