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Example: The university is hiring

Junior Senior
Teaching 40 hours 80 hours
Pay $31 $ 45
Hire at least one third

Have as many taught hours as possible, with a budget of $ 239.

max 40x7 4+ 80 xo
st. 3lxy +45z0 <239
z1 > La
X1 >0
xo >0
1 , To €7
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Lot-sizing
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Transportation problems

> ...

Most are NP-hard, and computationally difficult to solve.

Scheduling (timetable building, machine tool switching, . ..

Discrete flow problems (power and energy distribution, . ..



A Mixed Integer linear Programming problem

min ¢’z
(MIP)  st. Axz>b

xj € L,forj e J
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Solving MIPs: branch and bound

min 'z
(MIP1) st. Az>0b
z; < |7

x; € L,forj e J

min ¢’z
(MIP2) st. Axz>0b
zi 2 [x]]

x; € L,forj e J

(MIP)

N

(MIPO) (MIP1)

N

(MIPOO)  (MIPO1)



Cuts / Valid inequalities

min Lz
(MIP)  st. Az>b

xj € Z,forj e J
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Cuts / Valid inequalities

min Lz

(MIP)  st. Az >b
x; € L,forj e J

(cut) ar >1
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Why cut?

Most often,

‘ no cuts — more cuts
computing cuts 0 more time
each b&b node | faster slower

b&b nodes more less
In practice,

disabling cuts — 54 x slower

(geometric mean over 719 instances [Bixby, Rothberg, 2007]).
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Example of cut

Let z € Z‘}r,
34x1+4.2x90 —4.623 <4.5

\
3r1 4+ 4xo — bz < 4.5

J
3r1 + 4xo — dxg < 4

Chvatal-Gomory cut



What cuts?

Disabled cut Performance degradation

Gomory mixed-integer  2.52 x
Mixed-integer rounding 1.83 X

Knapsack cover 1.40 x
Flow cover 1.22 x
Implied bound 1.19 x
Flow path 1.04 x
Clique 1.02 x
GUB cover 1.02 x

(geometric mean over 106 medium-sized instances [Bixby, Rothberg,.2007]).



A. TWO-ROW CUTS



A.1. Background



Single-row cuts

From one (re)formulation of the problem
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we extract one constraint A; z > b;.
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Single-row cuts

From one (re)formulation of the problem

T

min ¢'zx
(MIP) s.t. Ax>b
g €L

we extract one constraint A; z > b;.

» Knowing that x; € Z, we construct a stronger inequality.

» In some cases, the cut can separate a specific point z*.
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Two-row cuts

From one (re)formulation of the problem

min ¢z
st. Ax=0b
(MIP)
x>0
ry € 7L
we extract two constraints
z1 + > a8 = fi x1,T0 €EZ
—+ 2o + Zjazjsj‘ = fo ’ AS Ry
As a vector equation,
; x € 72
_ Jg.
(P w=fad s emy
J

In case (MIP) describes a simplex tableau, (27 p, s p) = (f,0).



A.2. Problem statement



The two-row model

_ Je.
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The two-row model

x = f+ Zj ris; .
r € 72 y
r
85 = 0
Example:

(Lol 1ll
s = 27a27272

1, 1. 1, 1
p=fagrt gt gt o




The two-row model

r = f—l-zjrjsj

r € Z*
sj =2 0
Example:

(Lol
s = 27a27272

1, 1. 1, 1
r=fagrt gt gt

14 1 2
x—f+§7“ +ET‘




The two-row model

r o= f+17s .
r € 72 3
r
Sj Z 0
An inequality of the form .
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The two-row model

x o= f+rs;
x € 72
Sj Z 0

An inequality of the form
o181+ ...+ aps, > 1
with «; > 0, cuts off

interior(Ly,)

in the x space
i_ 1.
where v* = f 4 Z-r'.
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Validity: The linear programming intuition

Given T € Z2, we want that

Vs e R : T = f+ Rs, @181 + ...+ apsy > 1

i.e. we want

min @181+ ...+ apsy > 1
s.t. Rs f

- T —
s >0
therefore we need

Vi, j, 87,87

—_ Toi . T, T T,
i287 1T =4S 48, sji + sja; > 1



Lattice-free sets — the geometrical intuition

Given T € 72,

for all i,j : T € f + cone(r,7),

T T
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Lattice-free sets — the geometrical intuition

Given T € 72,

forall 4,5 : T € f + cone(r?,r7),

T T
s; oy + 5504 > 1,

with s7,s7 1 T = f + sir" + s717.




Lattice-free sets — the intuition, for all x

For all z € Z2,
forall 4,5 : x € f + cone(r?,r7),
sja; + sfaj >1,

with s7,s7 1 @ = f + sir' + sjrd.




Lattice-free sets — the intuition, for every cone

For all i, j, \

for all z € Z> N (f + cone(r?, r7)),

T T
s;a; + sja5 > 1,

; T T . _ T .1 z..j 1o
with s7,s7 @ @ = f 4+ sir' +sjrd. 12




Lattice-free sets — the set &j;

For all 4, 7, \

forall z € Xij,

T T
s; o + sja5 > 1,

o

: T LT . _ T i TG T
with sf,s7 1 @ = f+sir" +s7rd. 02

> we can restrict x € Z? to
x € X;j where &;; is the set of
the vertices of
72N (f + conv(rt, r7)).




Polarity

Let P C RY be a radial polyhedron and Q@ C R¥ its polar.

There is a correspondance between

Extreme point x € P and
Extreme ray x € P and

Facet of P: a1z >1 and
Facet of P: @Xz >0 and

Facet of Q: 7%a > 1
Facet of Q: 77a > 0

Extreme point @ € )
Extreme ray @ € Q)



Polarity, applied
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Polarity, applied

» We have a polyhedron

conv(Pr) = conv <{(w,s) EL*XRY | z=f+ > rjsj}> :
conv(Pr) C R?*" is of dimensionality n.

We know the extreme points and rays of conv(Py).

We can build the polar Q C R”™ of conv(Py).

We can optimize over )

vV v v VY
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Polarity, applied

v

We have a polyhedron
conv(Pr) = conv <{(w,s) EL*XRY | z=f+ > rjsj}> :

conv(Pr) C R?*" is of dimensionality n.

We can build the polar Q C R”™ of conv(Py).

>

» We know the extreme points and rays of conv(Fy).
>

» We can optimize over () to find facets conv(FPy).

Extreme point Z € conv(P;) —— Facetof Q: Z7a > 1

Extreme ray T € conv(Pr) —  Facet of Q: 71 >0
1l

Facet of conv(P;): @'z >1 «— Extreme point @ € Q

Facet of conv(P;): alx >0 «— Extremeraya € Q
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Finding facets of conv P;

The polar of conv(Pr) is
Q={aeR}|Vij Vo e X sia;+sjoa;>1}.
T

We find facets of conv(P;) by choosing an objective function ¢* «
and optimizing over Q:

min Lo

s.t. sTa;+ sj-”aj >1, Vi,j, Vo € Xj;
a>0



A.3. New developments
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» For each vertex, write one constraint.

1. Cones: quadratic in the number of rays.

2. Vertices: polynomial (but possibly large) number in each cone.
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The complexity of the polar — the intuition

Q:{QERiIVi,j, VCCEXU,

sfa; +sja; > 1}

Q' ={aeR} |V Voe X,

sii+ s i > 1}

O={acwy|
V’Z, Vo € Xi,i—l-l?

x x
Si 0 + 87101 2 1

Vi: 7t € cone(rit, ritl)

o < N_j0i1 + N }

» What is Q \ Q?
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The complexity of the polar — the theory

Q={aeR} |VYij, Ve Xy, stai +sja; > 1}

Q={acR! |
Vi, YV € Xi,i+1a sfai + Sf+104i+1 >1

Vi rt € cone(rl ritl) o <AL g + /\2+1ai+1 }.

Theorem
Q C Q, and all vertices of Q are in Q.

Corollary
. T . T

min ¢« min ¢«
Ifc>0, an —  share the same set of

st. a€eqQ st. a€eQ
optimal solutions.

: T
min ¢« .

If ¢; <0, then is unbounded.

st. a€Q



Complexity of writing the polar (2)

» For each cone, compute integer hull.

» For each vertex, write one constraint.

1. Cones: quadratic linear in the number of rays.

2. Vertices: polynomial (but possibly large) number in each cone.



Complexity of writing the polar (2)

» For each cone, compute integer hull.

» For each vertex, write one constraint.

1. Cones: quadratic linear in the number of rays.

2. Vertices: poler large) number in each cone.

3. In practice, generate the constraints of ) by row generation.



A.4. Results
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Average Average

iter.  time (ms)

per cut per cut

MIPLIB 3 31 1.8 ms

MIPLIB 2003 15.6 24.3 ms
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MIPLIB 3
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Computational results

Average Average
iter.  time (ms)
per cut per cut
MIPLIB 3 3.1 1.8 ms
MIPLIB 2003 15.6 24.3 ms
one-row two-row (split sets) two-row
Average  Average Average  Average Average  Average
sep. cuts %gc | sep. cuts %gc | sep. cuts %gc
MIPLIB 3 695.0 29.4 % 39.7 34.8 % 232.7 36.2 %
MIPLIB 2003 4465.3 31.3 % 465.5 33.0 % 600.7 345 %
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Conclusions

» We have a fast separation for two-row cuts.
» These cuts are the strongest for the two-row model.

» They close more gap than one-row (intersection) cuts.

But

» they do not close much more gap than two-row intersection
cuts from split sets.



B. SEPARATION OVER ARBITRARY
MIXED-INTEGER SETS



Motivations

» We want to test stronger relaxations

» We still want exact separation



B.1. Separation method
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Problem

Given

» a relaxation P of mixed-integer set in R",

> a point z* € R”,

find (o, ap) € R™! such that
oLz > Qg

is a valid inequality for P that separates z*,

or show that z* € conv(P).



General framework

Solve the optimization problem
min z*Ta
st. 2Ta>ay forallzeP (Sep. LP)

Let (&, ap) be an optimal solution.

If 2*Ta < ay, then (@, ag) separates x*.

If z*Ta > ay, then 2* € conv(P).



General framework

Solve the optimization problem

T

min z* «
st. 2Ta>ay forallzeP (Sep. LP)
<norm.>

Let (&, ap) be an optimal solution.

If 2*Ta < ay, then (@, ag) separates x*.

If z*Ta > ay, then 2* € conv(P).
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Row generation
1. Consider the relaxation of the separation problem

min 2 Ta
s.t. 2la>ap forallze SCP (master)
<norm.>

Let (@, ap) be an optimal solution.

2. Now solve the MIP
min alz

st. 2 CP (slave)

and let 2P be a finite optimal solution.

If a’zP > &g, then (&, ap) is valid for P.

If aTaP < &g, then S := S U {aP}.



Computational example

Instance: bell3a
Constraints: 123
Variables: 133 (71 integer: 32 general, 39 binaries)
Models: 82 five-row models read from an optimal tableau

Cuts: 37 (17 tight at the end)
Gap closed:  59.02% (from 39.03% by GMIs)

Time: | 1615.70s
Iterations: 107647
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Two-phases: Phase one

x* between bounds z* at bounds

T ’ rB TN

fix toT)ou nd

«: ’ ap an

find



Two-phases: Phase two

x* between bounds z* at bounds
T ] B TN
« ] ap an

fixed lift
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(bell3a, 82 five-row models, 37 cuts, 59.02%gc)

original | 2-phases
Time: | 1615.70s | 161.15s
Iterations: 107647 23822
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Computational example (lifting binaries)
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(bell3a, 82 five-row models, 37 cuts, 59.02%gc)

original | 2-phases lifting

Time: | 1615.70s | 161.15s | 136.54s
Iterations: 107647 23822 23231
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fixed



Sequential phase-2 (“phase-S")

z* between bounds

x* at bounds

binary
~—~
T rB T Nbin Lk LN
. N
(fixed to bnd)
o aB O Nbin af an
)
fixed lift Zero



Sequential phase-2 (“phase-S")

z* between bounds x* at bounds

binary
—~
T: TB L Nbin Tk TN
(o7 ap O Nbin (697 a7
——

fixed fized



Computational example (phase S)

(bell3a, 82 five-row models, 37 cuts, 59.02%gc)

original | 2-phases lifting | phase S
Time: | 1615.70s | 161.15s | 136.54s
[terations: 107647 23822 23231




Computational example (phase S)

(bell3a, 82 five-row models, 37 cuts, 59.02%gc)

original | 2-phases lifting | phase S
Time: | 1615.70s | 161.15s | 136.54s 5.84s
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Computational example (solver tricks)

(bell3a, 82 five-row models, 37 cuts, 59.02%gc)

original | 2-phases lifting | phase S cb
Time: | 1615.70s | 161.15s | 136.54s 5.84s
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Computational example (solver tricks)

(bell3a, 82 five-row models, 37 cuts, 59.02%gc)

original | 2-phases lifting | phase S cb

Time: | 1615.70s 161.15s | 136.54s 5.84s | 4.65s
Iterations: 107647 23822 23231 2497 | 2497




Computational example (summary)

(bell3a, 82 five-row models, 37 cuts,

59.02%gc)

original | 2-phases lifting | phase S cb

347 x 39X 29 x 1.26x 1

Time: | 1615.70s | 161.15s | 136.54s 5.84s | 4.65s
[terations: 107647 23822 | 23231 2497 | 2497
43 10x 9x 1 1




B.2. Application to two-row relaxations
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Two-row intersection cuts + strengthening

basic nonbasic
€7 bnd. €7 bnd.
Py v/ X X B
S-free V vV X B
lifting Vv X Vv B
P]U \/ X X \/
full 2-row  / vV V vV

Vi keep

B: keep binding
x: drop




Two-row intersection cuts and strengthenings

51 common instances:

cuts gc%
GMI | 28.240 22.46%

Pr | 29.420 27.65%

S-free | 38.380 30.22%
lifting | 22.700 27.35%
Pry | 42.640 28.56%

full 2-row | 55.500 35.66%
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Two-row intersection cuts and strengthenings

51 common instances:

cuts gc% || exact
GMI | 28.240 22.46% all

Pr | 29.420 27.65% 42

S-free | 38.380 30.22% 29
lifting | 22.700 27.35% 10
Py | 42.640 28.56% 25

full 2-row | 55.500 35.66% 22




Two-row intersection cuts and strengthenings

51 common instances:

exact

GMI all

P; 65% | 42
S-free 30.22% 29
lifting 7.35% 10

g 6% 25

full 2-ro ) ) 22




Two-row intersection cuts and strengthenings

15 common instances:

cuts gc% || exact
GMI | 20.667 26.541 all

Pr | 20.933 33.535 all

S-free | 25.400 35.229 all
Pry | 36.600 36.257 all

full 2-row | 57.267 43.956 all




Two-row intersection cuts and strengthenings

7 common instances:
[bell5, blend2, egout, khb05250, misc03, misc07, setlch]

cuts gc% || exact
GMI | 25,571 24.744 all

Pr | 25.143 33.641 all

S-free | 28.714 33.836 all
lifting | 25.571 33.716 all
Pry | 47.857 37.531 all

full 2-row | 48.000 37.583 all
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» We depend on a specific optimal basis



Bases

» We depend on a specific optimal basis

» Will the gap closed by two-row cuts survive more GMIs?



Relax and cut: results

43 common instances:

cuts gc% || exact

GMI | 24.814 23.282 all

2-row i.c. | 31.884 28.838 42

full 2-row | 62.140 36.080 22
relax&cut GMI | 60.372 34.970 all
relax&cut 2-row i.c. | 63.163 41.951 37
relax&cut full 2-row | 76.767 47.277 12




Instances

More rows: Computing time

60 4

40 4
304

S

104

50 M

Time (s)

7000 4

6000

5000 -

4000 -

3000

2000

1000

Rows

instances with result, and
instances with exact separation

Rows

geometric mean of time
(on 42 common instances)



Cuts

More rows: Gap closed

160 4

140

120

100

80

60

40 4

204

%gc

60 4

50

404

30+

20+

Rows

number of cuts generated
(on 42 common instances)

Rows

average %gc
(on 42 common instances)
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Overall summary

» a (quick) two-row intersection cut separator
» assessment: strength of the two-row model
> a (slow) generic arbitrary-MIP cut separator

» assessment: strength of multi-row model and variants
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» Number of rows: few or almost all



Conclusions

Multi-row cuts:

» Number of rows: few or almost all

> Intersection cuts: need to apply all strengthenings
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The integer hull

Adding all valid inequalities for (MIP),
we obtain: R

conv{z : z € (MIP)}
In theory: as hard as solving (MIP)

In practice: much harder



Can we avoid the integer hulls X;;?

Q={aeRy} |
Vi, Vo € Xi,i—&-l; sfai + 8f+104i+1 >1

Vi: 7t € cone(ri=1 ritl) o < A_jouio1+ A



Can we avoid the integer hulls X;;?

Q={aeR} |
Vi, Vo € Xi,i—&-l; s;-”ai + s:;-”+1ai+1 >1
Vi: 7t € cone(ri=1 ritl) o < A_jouio1+ A

Q(S)={aeRy |
Vi, Vo € SN (f + cone(r’, 7)), sPa; + sf i > 1
Vi: rt € cone(ri=t pitl), i <Aoo + A§+1ai+1 1

with S C Z2.



Separation algorithm

S =5
do {

a = argmin cla

st. a€Q(9) 30 0 24
T
ifacQ
OK, valid cut, exit.
else

Find a constraint of Q
violated by «.
Add constraints to S.
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Separation algorithm

S =5
do {
a = argmin cla

st. a€Q(S) | 0 y

if L, is lattice-free
OK, valid cut, exit.

else

Find 2 € Z? N interior(Ly).

Add z to S.
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The oracle

Find an integer point in interior(L,) or prove that L, is lattice-free.

U2

» possible in polynomial time for
any fixed dimension d
(Barvinok's algorithm)

> butd=2
» we know SN L,

» closed-form formula?
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The oracle: conv(T)

Find an integer point in interior(L,) or prove that L, is lattice-free.

1. Consider the convex hull conv(T") . . . .
where T':= S N boundary(Lg).
» triangularize conv(T)

» find integer points on integer
segments and integer triangles




The oracle: conv(T'), continued

Let A be conv(0,u,v) with u,v € Z and ged(u, u2) = ged(vy,v2) = 1.

4 . : et(|uv
{det([uyv])“ T detupep ¢ M E B 0 <A+ p < det((ul ])}




The oracle: conv(T'), continued

Let A be conv(0, u,v) with u,v € Z and ged(ug, u2) = ged(vy, v) = 1.

4 - : et(|uv
{det([uyv])“ T detupep? ¢ M E B 0 <A+ p < det((ul ])}

Prop.: A has an interior lattice point with = 1, or is lattice-free.




The oracle: conv(T'), continued

Let A be conv(0, u,v) with u,v € Z and ged(ug, ue) = ged(vy,v) = 1.

4 - : et(|uv
{det([uyv])“ T detupep ¢ M E B 0 <A+ p < det((ul ])}

Prop.: A has an interior lattice point with = 1, or is lattice-free.

It is enough to solve the diophantine system

Aug + vg = ko det([ulv])



The oracle: interior(L,,)

2. Assuming conv(T') lattice-free,

Prop.: It is enough to check 2 or 3 specific integer points:




Solver tricks: callbacks

Solving slave MIPs
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min & x
r C P,
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» Feasible solution & with &’ < ag

— & can be added to S.



Solver tricks: callbacks

Solving slave MIPs
T

min a'«x
x C P,

s.t. ;

» Feasible solution # with a’2 < &g

— & can be added to S.

» Dual bound z reaches &y,

— (@, ap) is valid for P.
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Two-row relaxation: which models?

» We are still far from a closure

» What reasonable set of two-models can we select?
— All models read from a simplex tableau

— O(m?) two-row models



b

all” two-row models: separation loop

Let * «+ LP optimium
Read the two-row models from optimal tableau.
Read and add GMIs from that tableau.

do {

Let z* < new LP optimum.

Separate x* with the two-row models.
} while (cuts were found).
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b

all” two-row models: separation loop

Let * «+ LP optimium
Read the two-row models from optimal tableau.
Read and add GMIs from that tableau.

do {

Let z* < new LP optimum.

Separate x* with the two-row models.
} while (cuts were found).



b

all" two-row models: results

Computations on the 62 MIPLIB 3.0 (preprocessed) instances for
which

(a). the integrality gap is not zero, and

(b). an optimal MIP solution is known.
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b

all" two-row models: results

We have a result for 55/62 instances (4 numerical, 3 memory).

cuts gc%
GMI | 24.800 22.60%
All 2-row | 72.382 37.49%

For 13 instances, the separation is exact.
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» O(m?) is already a large number of models
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Heuristic selection of two-row models

Issue:

» O(m?) is already a large number of models

Hypothesis:

» Not all models are necessary to achieve good separation

Rationale:
» MIPLIB models are mostly sparse

» Multi-cuts from rows with no common support are linear
combinations of the corresponding one-row cuts



Heuristic selection of two-row models: results

With an arbitrary limit of m two-row models,
we have a result for 58/62 instances (1 numerical, 3 memory).
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With an arbitrary limit of m two-row models,
we have a result for 58/62 instances (1 numerical, 3 memory).

On the 55 common results,

cuts gc%

GMI | 24.800 22.60%
All 2-row | 72.382 37.49%
Heuristic | 57.418 35.19%




Heuristic selection of two-row models: results

With an arbitrary limit of m two-row models,
we have a result for 58/62 instances (1 numerical, 3 memory).

On the 55 common results,

cuts gc%

GMI | 24.800 22.60%
All 2-row | 72.382 37.49%
Heuristic | 57.418 35.19%

For 25 instances, the separation is exact.



Polarity for general polyhedra: Conify

Polyhedron Polyhedral cone
P Pt

vertex v extreme ray (v, —1)
extreme ray r extreme ray (r,0)
[ in the lineality space  — (1,0) in the lineality space
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Polarity for general polyhedra: Conify

Polyhedron Polyhedral cone
P Pt
vertex v = extreme ray (v, —1)

¢

extreme ray r extreme ray (r,0)
I in the lineality space < (1,0) in the lineality space

facet-defining o’z > oy < facet-defining o’z + agzg > 0
valid aTz = ag & valid o’z 4+ apgzg =0



Conify: P is a polytope

Pt

Note: P = proj,(PT Nn{xo = —1}).
Pt = {(z,m0) € R"" : 29 <0, x € —2¢P}



Conify: P is a general polyhedro\n

Ta
y X
Pt
' 1/,' x()
____‘,:f——-“'— 0 -
-1

Note: P = proj,(PT Nn{xo = —1}).
Pt ={(z,20) € R" : 29 <0, “z € —xoP + recc(P)"}



Polarity for full-dimensional polyhedral cones

pt Q

extreme ray r & facet-defining 77a > 0
[ in the lineality space & valid Taa =0
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Polarity for full-dimensional polyhedral cones

Pt Q
extreme ray r & facet-defining 77a > 0
[ in the lineality space & valid Taa =0

Q is the polar of P & PT is the polar of Q

facet-defining 7z >0 < extreme ray
valid 7Tz =0 < v in the lineality space



Going back to general (full-dimensional) polyhedra

Polyhedron Polyhedral cone Polar of P™
P pt 9]
vert. v ray (v, —1) via—ag>0
ray ray (v,0) rTa>0
lin lin.sp. (1,0) in lin.sp. Ta=0
alz > o alz + apzg >0 ray (a, o)
aTr = o alz + apzg =0 (v, ) in lin.sp.



