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Example: The university is hiring

Junior Senior

Teaching 40 hours 80 hours

Pay $ 31 $ 45

Hire at least one third

Have as many taught hours as possible, with a budget of $ 239.

max 40x1 + 80x2

s.t. 31x1 + 45x2 ≤ 239
x1 ≥ 1
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Applications

I Scheduling (timetable building, machine tool switching, . . . )

I Bin-packing (chipset floor planning, . . . )

I Traveling Salesman Problem (ICs soldering and drilling)

I Discrete flow problems (power and energy distribution, . . . )

I Assignment

I Lot-sizing

I Transportation problems

I . . .

Most are NP-hard, and computationally difficult to solve.
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A Mixed Integer linear Programming problem

min cTx
s.t. A x ≥ b

xj ∈ Z, for j ∈ J
(MIP)
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Why cut?

Most often,

no cuts ↔ more cuts

computing cuts 0 more time
each b&b node faster slower

b&b nodes more less

In practice,

disabling cuts → 54× slower

(geometric mean over 719 instances [Bixby, Rothberg, 2007]).
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What cuts?

Disabled cut Performance degradation

Gomory mixed-integer 2.52 ×
Mixed-integer rounding 1.83 ×
Knapsack cover 1.40 ×
Flow cover 1.22 ×
Implied bound 1.19 ×
Flow path 1.04 ×
Clique 1.02 ×
GUB cover 1.02 ×

(geometric mean over 106 medium-sized instances [Bixby, Rothberg, 2007]).



A. Two-row cuts



A.1. Background



Single-row cuts

From one (re)formulation of the problem

(MIP)
min cTx

s.t. A x ≥ b
xJ ∈ Z

we extract one constraint Ai x ≥ bi.

I Knowing that xj ∈ Z, we construct a stronger inequality.

I In some cases, the cut can separate a specific point x∗.
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Two-row cuts

From one (re)formulation of the problem

(MIP)

min cTx

s.t. A x = b
x ≥ 0
xJ ∈ Z

we extract two constraints

x1 +
∑

j a1jsj = f1

+ x2 +
∑

j a2jsj = f2
,

x1, x2 ∈ Z
sj ∈ R+

As a vector equation,

(PI) x = f +
∑
j

rjsj ,
x ∈ Z2

s ∈ Rn
+

In case (MIP) describes a simplex tableau, (x∗LP , s
∗
LP ) = (f, 0).
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The two-row model

x = f +
∑

j r
jsj

x ∈ Z2

sj ≥ 0



The two-row model

x = f +
∑

j r
jsj

x ∈ Z2

sj ≥ 0

Example:

s =
(

1
2
, 0,

1
2
,
1
2
,
1
2

)

x = f +
1
2
r1 +

1
2
r5 +

1
2
r4 +

1
2
r3

x = f +
1
2
r4 +

1
12
r2



The two-row model

x = f +
∑

j r
jsj

x ∈ Z2

sj ≥ 0

Example:

s =
(

1
2
, 0,

1
2
,
1
2
,
1
2

)

x = f +
1
2
r1 +

1
2
r5 +

1
2
r4 +

1
2
r3

x = f +
1
2
r4 +

1
12
r2



The two-row model

x = f +
∑

j r
jsj

x ∈ Z2

sj ≥ 0

An inequality of the form

α1s1 + . . .+ αnsn ≥ 1

with αi ≥ 0, cuts off

interior(Lα)

in the x space
where vi = f + 1

αi
ri.
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Validity: The linear programming intuition

Given x ∈ Z2, we want that

∀s ∈ Rn
+ : x = f +Rs, α1s1 + . . .+ αnsn ≥ 1

i.e. we want

min α1s1 + . . .+ αnsn
s.t. Rs = x− f

s ≥ 0

≥ 1

therefore we need

∀i, j, sxi , sxj : x = f + sxi r
i + sxj r

j , sxi αi + sxjαj ≥ 1.
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Lattice-free sets – the set Xij

For all i, j,

for all x ∈ Xij ,

sxi αi + sxjαj ≥ 1,

with sxi , s
x
j : x = f + sxi r

i + sxj r
j .

I we can restrict x ∈ Z2 to
x ∈ Xij where Xij is the set of
the vertices of
Z2 ∩ (f + conv(ri, rj)).



Polarity

Let P ⊆ RN be a radial polyhedron and Q ⊆ RN its polar.
There is a correspondance between

Extreme point x ∈ P and Facet of Q: xTa ≥ 1
Extreme ray x ∈ P and Facet of Q: xTa ≥ 0

Facet of P : aTx ≥ 1 and Extreme point a ∈ Q
Facet of P : aTx ≥ 0 and Extreme ray a ∈ Q



Polarity, applied

I We have a polyhedron

conv(PI) = conv
({

(x, s) ∈ Z2 × Rn
+ | x = f +

∑
j r

jsj

})
.

I conv(PI) ⊆ R2+n is of dimensionality n.

I We know the extreme points and rays of conv(PI).

I We can build the polar Q ⊆ Rn of conv(PI).

I We can optimize over Q to find facets conv(PI).

Extreme point x ∈ conv(PI) −→ Facet of Q: xTα ≥ 1
Extreme ray x ∈ conv(PI) −→ Facet of Q: xTα ≥ 0

↓ ↓
Facet of conv(PI): αTx ≥ 1 ←− Extreme point α ∈ Q
Facet of conv(PI): αTx ≥ 0 ←− Extreme ray α ∈ Q



Polarity, applied

I We have a polyhedron

conv(PI) = conv
({

(x, s) ∈ Z2 × Rn
+ | x = f +

∑
j r

jsj

})
.

I conv(PI) ⊆ R2+n is of dimensionality n.

I We know the extreme points and rays of conv(PI).

I We can build the polar Q ⊆ Rn of conv(PI).

I We can optimize over Q to find facets conv(PI).

Extreme point x ∈ conv(PI) −→ Facet of Q: xTα ≥ 1
Extreme ray x ∈ conv(PI) −→ Facet of Q: xTα ≥ 0

↓ ↓
Facet of conv(PI): αTx ≥ 1 ←− Extreme point α ∈ Q
Facet of conv(PI): αTx ≥ 0 ←− Extreme ray α ∈ Q



Polarity, applied

I We have a polyhedron

conv(PI) = conv
({

(x, s) ∈ Z2 × Rn
+ | x = f +

∑
j r

jsj

})
.

I conv(PI) ⊆ R2+n is of dimensionality n.

I We know the extreme points and rays of conv(PI).

I We can build the polar Q ⊆ Rn of conv(PI).

I We can optimize over Q to find facets conv(PI).

Extreme point x ∈ conv(PI) −→ Facet of Q: xTα ≥ 1
Extreme ray x ∈ conv(PI) −→ Facet of Q: xTα ≥ 0

↓ ↓
Facet of conv(PI): αTx ≥ 1 ←− Extreme point α ∈ Q
Facet of conv(PI): αTx ≥ 0 ←− Extreme ray α ∈ Q



Polarity, applied

I We have a polyhedron

conv(PI) = conv
({

(x, s) ∈ Z2 × Rn
+ | x = f +

∑
j r

jsj

})
.

I conv(PI) ⊆ R2+n is of dimensionality n.

I We know the extreme points and rays of conv(PI).

I We can build the polar Q ⊆ Rn of conv(PI).

I We can optimize over Q to find facets conv(PI).

Extreme point x ∈ conv(PI) −→ Facet of Q: xTα ≥ 1
Extreme ray x ∈ conv(PI) −→ Facet of Q: xTα ≥ 0

↓ ↓
Facet of conv(PI): αTx ≥ 1 ←− Extreme point α ∈ Q
Facet of conv(PI): αTx ≥ 0 ←− Extreme ray α ∈ Q



Polarity, applied

I We have a polyhedron

conv(PI) = conv
({

(x, s) ∈ Z2 × Rn
+ | x = f +

∑
j r

jsj

})
.

I conv(PI) ⊆ R2+n is of dimensionality n.

I We know the extreme points and rays of conv(PI).

I We can build the polar Q ⊆ Rn of conv(PI).

I We can optimize over Q to find facets conv(PI).

Extreme point x ∈ conv(PI) −→ Facet of Q: xTα ≥ 1
Extreme ray x ∈ conv(PI) −→ Facet of Q: xTα ≥ 0

↓ ↓
Facet of conv(PI): αTx ≥ 1 ←− Extreme point α ∈ Q
Facet of conv(PI): αTx ≥ 0 ←− Extreme ray α ∈ Q



Finding facets of conv PI

The polar of conv(PI) is

Q = { α ∈ Rn
+ | ∀i, j, ∀x ∈ Xij , sxi αi + sxjαj ≥ 1 }.

We find facets of conv(PI) by choosing an objective function cTα
and optimizing over Q:

min cTα
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A.3. New developments



Complexity of writing the polar (1)
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I For each vertex, write one constraint.

1. Cones: quadratic in the number of rays.

2. Vertices: polynomial (but possibly large) number in each cone.
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The complexity of the polar – the theory
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Corollary

If c > 0,
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s.t. α ∈ Q share the same set of

optimal solutions.

If ci < 0, then
min cTα
s.t. α ∈ Q is unbounded.
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Complexity of writing the polar (2)

I For each cone, compute integer hull.

I For each vertex, write one constraint.

1. Cones: ���
��quadratic linear in the number of rays.

2. Vertices: polynomial (but possibly large) number in each cone.

3. In practice, generate the constraints of Q by row generation.
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A.4. Results



Computational results

Average Average
iter. time (ms)

per cut per cut
MIPLIB 3 3.1 1.8 ms
MIPLIB 2003 15.6 24.3 ms

one-row two-row (split sets) two-row
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sep. cuts %gc sep. cuts %gc sep. cuts %gc
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Conclusions

I We have a fast separation for two-row cuts.

I These cuts are the strongest for the two-row model.

I They close more gap than one-row (intersection) cuts.

But

I they do not close much more gap than two-row intersection
cuts from split sets.
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B. Separation over arbitrary
mixed-integer sets



Motivations

I We want to test stronger relaxations

I We still want exact separation



B.1. Separation method



Problem

Given

I a relaxation P of mixed-integer set in Rn,

I a point x∗ ∈ Rn,

find (α, α0) ∈ Rn+1 such that

αTx ≥ α0

is a valid inequality for P that separates x∗,

or show that x∗ ∈ conv(P ).
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General framework

Solve the optimization problem

min x∗Tα
s.t. xTα ≥ α0 for all x ∈ P

<norm.>

(Sep. LP)

Let (ᾱ, ᾱ0) be an optimal solution.

If x∗T ᾱ < ᾱ0, then (ᾱ, ᾱ0) separates x∗.

If x∗T ᾱ ≥ ᾱ0, then x∗ ∈ conv(P ).
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Let (ᾱ, ᾱ0) be an optimal solution.

If x∗T ᾱ < ᾱ0, then (ᾱ, ᾱ0) separates x∗.
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Row generation
1. Consider the relaxation of the separation problem

min x∗Tα
s.t. xTα ≥ α0 for all x ∈ S ⊆ P

<norm.>

(master)

Let (ᾱ, ᾱ0) be an optimal solution.

2. Now solve the MIP

min ᾱTx
s.t. x ⊆ P (slave)

and let xp be a finite optimal solution.

If ᾱTxp ≥ ᾱ0, then (ᾱ, ᾱ0) is valid for P.

If ᾱTxp < ᾱ0, then S := S ∪ {xp}.
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Computational example

Instance: bell3a
Constraints: 123

Variables: 133 (71 integer: 32 general, 39 binaries)
Models: 82 five-row models read from an optimal tableau

Cuts: 37 (17 tight at the end)
Gap closed: 59.02% (from 39.03% by GMIs)

Time: 1615.70s
Iterations: 107647



Two-phases: Phase one

x∗ between bounds x∗ at bounds︷ ︸︸ ︷ ︷ ︸︸ ︷
x : xB xN︸ ︷︷ ︸

fix to bound

α : αB αN.︸︷︷︸
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original 2-phases

Time: 1615.70s 161.15s
Iterations: 107647 23822
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(bell3a, 82 five-row models, 37 cuts, 59.02%gc)
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Computational example (phase S)

original 2-phases lifting phase S

Time: 1615.70s 161.15s 136.54s 5.84s
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Computational example (solver tricks)

original 2-phases lifting phase S cb

Time: 1615.70s 161.15s 136.54s 5.84s 4.65s
Iterations: 107647 23822 23231 2497 2497

(bell3a, 82 five-row models, 37 cuts, 59.02%gc)



Computational example (solver tricks)

original 2-phases lifting phase S cb

Time: 1615.70s 161.15s 136.54s 5.84s 4.65s
Iterations: 107647 23822 23231 2497 2497

(bell3a, 82 five-row models, 37 cuts, 59.02%gc)



Computational example (summary)

original 2-phases lifting phase S cb

347× 35× 29× 1.26× 1
Time: 1615.70s 161.15s 136.54s 5.84s 4.65s

Iterations: 107647 23822 23231 2497 2497
43× 10× 9× 1 1

(bell3a, 82 five-row models, 37 cuts, 59.02%gc)



B.2. Application to two-row relaxations
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Two-row intersection cuts and strengthenings

51 common instances:

cuts gc% exact

GMI 28.240 22.46% all

PI 29.420 27.65% 42
S-free 38.380 30.22% 29
lifting 22.700 27.35% 10
PIU 42.640 28.56% 25

full 2-row 55.500 35.66% 22
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Two-row intersection cuts and strengthenings

15 common instances:

cuts gc% exact

GMI 20.667 26.541 all

PI 20.933 33.535 all
S-free 25.400 35.229 all
PIU 36.600 36.257 all

full 2-row 57.267 43.956 all



Two-row intersection cuts and strengthenings

7 common instances:
[bell5, blend2, egout, khb05250, misc03, misc07, set1ch]

cuts gc% exact

GMI 25.571 24.744 all

PI 25.143 33.641 all
S-free 28.714 33.836 all
lifting 25.571 33.716 all
PIU 47.857 37.531 all

full 2-row 48.000 37.583 all



Bases

I We depend on a specific optimal basis

I Will the gap closed by two-row cuts survive more GMIs?
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Relax and cut: results

43 common instances:

cuts gc% exact

GMI 24.814 23.282 all

2-row i.c. 31.884 28.838 42
full 2-row 62.140 36.080 22

relax&cut GMI 60.372 34.970 all

relax&cut 2-row i.c. 63.163 41.951 37
relax&cut full 2-row 76.767 47.277 12
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More rows: Gap closed
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Overall summary

I a (quick) two-row intersection cut separator

I assessment: strength of the two-row model

I a (slow) generic arbitrary-MIP cut separator

I assessment: strength of multi-row model and variants
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Multi-row cuts:

I Number of rows: few or almost all

I Intersection cuts: need to apply all strengthenings



Conclusions

Multi-row cuts:

I Number of rows: few or almost all

I Intersection cuts: need to apply all strengthenings



————–



///////



|||||||



The integer hull

Adding all valid inequalities for (MIP),
we obtain:

conv{x : x ∈ (MIP)}

In theory: as hard as solving (MIP)

In practice: much harder
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Can we avoid the integer hulls Xij?

Q = { α ∈ Rn
+ |

∀i, ∀x ∈ Xi,i+1, sxi αi + sxi+1αi+1 ≥ 1

∀i : ri ∈ cone(ri−1, ri+1), αi ≤ λii−1αi−1 + λii+1αi+1 }

Q(S) = { α ∈ Rn
+ |

∀i, ∀x ∈ S ∩ (f + cone(ri, ri+1)), sxi αi + sxi+1αi+1 ≥ 1

∀i : ri ∈ cone(ri−1, ri+1), αi ≤ λii−1αi−1 + λii+1αi+1 },

with S ⊂ Z2.
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Separation algorithm

S := S0

do {
α := argmin cTα

s.t. α ∈ Q(S)

if α ∈ Q
OK, valid cut, exit.

else
Find a constraint of Q

violated by α.
Add constraints to S.

}
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if Lα is lattice-free
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Find x ∈ Z2 ∩ interior(Lα).

Add x to S.
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The oracle

I possible in polynomial time for
any fixed dimension d
(Barvinok’s algorithm)

I but d = 2
I we know S ∩ Lα
I closed-form formula?

Find an integer point in interior(Lα) or prove that Lα is lattice-free.
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The oracle: conv(T )

1. Consider the convex hull conv(T )
where T := S ∩ boundary(Lα).

I triangularize conv(T )
I find integer points on integer

segments and integer triangles

Find an integer point in interior(Lα) or prove that Lα is lattice-free.
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The oracle: conv(T ), continued

It is enough to solve the diophantine system{
λu1 + v1 = k1 det([u|v])
λu2 + v2 = k2 det([u|v])

, λ, k1, k2 ∈ Z

Let ∆ be conv(0, u, v) with u, v ∈ Z and gcd(u1, u2) = gcd(v1, v2) = 1.{
λ

det([u|v])
u+

µ

det([u|v])
v : λ, µ ∈ Z+, 0 < λ+ µ < det([u|v])

}
Prop.: ∆ has an interior lattice point with µ = 1, or is lattice-free.
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The oracle: interior(Lα)

2. Assuming conv(T ) lattice-free,

Prop.: It is enough to check 2 or 3 specific integer points:



Solver tricks: callbacks

Solving slave MIPs
min ᾱTx
s.t. x ⊆ P,

I Feasible solution x̂ with ᾱT x̂ < ᾱ0

→ x̂ can be added to S.

I Dual bound z reaches ᾱ0,

→ (ᾱ, ᾱ0) is valid for P .
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Two-row relaxation: which models?

I We are still far from a closure

I What reasonable set of two-models can we select?

→ All models read from a simplex tableau

→ O(m2) two-row models
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“all” two-row models: separation loop

Let x∗ ← LP optimium
Read the two-row models from optimal tableau.
Read and add GMIs from that tableau.

do {
Let x∗ ← new LP optimum.
Separate x∗ with the two-row models.

} while (cuts were found).
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Read and add GMIs from that tableau.

do {
Let x∗ ← new LP optimum.
Separate x∗ with the two-row models.

} while (cuts were found).



“all” two-row models: results

Computations on the 62 MIPLIB 3.0 (preprocessed) instances for
which

(a). the integrality gap is not zero, and

(b). an optimal MIP solution is known.



“all” two-row models: results

We have a result for 55/62 instances (4 numerical, 3 memory).

cuts gc%

GMI 24.800 22.60%
All 2-row 72.382 37.49%

For 13 instances, the separation is exact.
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Heuristic selection of two-row models

Issue:

I O(m2) is already a large number of models

Hypothesis:

I Not all models are necessary to achieve good separation

Rationale:

I MIPLIB models are mostly sparse

I Multi-cuts from rows with no common support are linear
combinations of the corresponding one-row cuts
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Heuristic selection of two-row models: results

With an arbitrary limit of m two-row models,
we have a result for 58/62 instances (1 numerical, 3 memory).

On the 55 common results,

cuts gc%

GMI 24.800 22.60%

All 2-row 72.382 37.49%
Heuristic 57.418 35.19%

For 25 instances, the separation is exact.



Heuristic selection of two-row models: results

With an arbitrary limit of m two-row models,
we have a result for 58/62 instances (1 numerical, 3 memory).

On the 55 common results,

cuts gc%

GMI 24.800 22.60%

All 2-row 72.382 37.49%
Heuristic 57.418 35.19%

For 25 instances, the separation is exact.



Heuristic selection of two-row models: results

With an arbitrary limit of m two-row models,
we have a result for 58/62 instances (1 numerical, 3 memory).

On the 55 common results,

cuts gc%

GMI 24.800 22.60%

All 2-row 72.382 37.49%
Heuristic 57.418 35.19%

For 25 instances, the separation is exact.



Polarity for general polyhedra: Conify

Polyhedron Polyhedral cone
P P+

vertex v → extreme ray (v,−1)
extreme ray r → extreme ray (r, 0)

l in the lineality space → (l, 0) in the lineality space

facet-defining αTx ≥ α0 ⇔ facet-defining αTx+ α0x0 ≥ 0
valid αTx = α0 ⇔ valid αTx+ α0x0 = 0
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Conify: P is a polytope

Note: P = projx(P+ ∩ {x0 = −1}).

P+ = {(x, x0) ∈ Rn+1 : x0 ≤ 0, x ∈ −x0P}



Conify: P is a general polyhedron

Note: P = projx(P+ ∩ {x0 = −1}).

P+ = {(x, x0) ∈ Rn+1 : x0 ≤ 0, “x ∈ −x0P + recc(P )′′}



Polarity for full-dimensional polyhedral cones

P+ Q

extreme ray r ⇔ facet-defining rTα ≥ 0
l in the lineality space ⇔ valid lTα = 0

Q is the polar of P+ ⇔ P+ is the polar of Q

facet-defining βTx ≥ 0 ⇔ extreme ray β
valid γTx = 0 ⇔ γ in the lineality space
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extreme ray r ⇔ facet-defining rTα ≥ 0
l in the lineality space ⇔ valid lTα = 0
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Going back to general (full-dimensional) polyhedra

Polyhedron Polyhedral cone Polar of P+

P P+ Q

vert. v ray (v,−1) vTα− α0 ≥ 0
ray r ray (v, 0) rTα ≥ 0

l in lin.sp. (l, 0) in lin.sp. lTα = 0

αTx ≥ α0 αTx+ α0x0 ≥ 0 ray (α, α0)
αTx = α0 αTx+ α0x0 = 0 (α, α0) in lin.sp.


