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Background



The mixed integer linear problem

min cT x
s.t. A x ≥ b

xj ∈ Z, for j ∈ J

(MIP)



The linear relaxation

min cT x
s.t. A x ≥ b

xj ∈ Z, for j ∈ J

(LP)



Cuts

(cut)

min cT x
s.t. A x ≥ b

xj ∈ Z, for j ∈ J

αx ≥ 1

(LP)



Single-row cuts

From one (re)formulation of the problem

(MIP)
min cT x

s.t. A x ≥ b
xJ ∈ Z

we extract one constraint Ai x ≥ bi .

I Knowing that xj ∈ Z, we construct a stronger inequality.

I In some cases, the cut can separate a given MIP-infeasible
point x∗.
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Two-row cuts
From one (re)formulation of the problem

(MIP)

min cT x

s.t. A x = b
x ≥ 0

xJ ∈ Z

we extract two constraints

x1 +
∑

j a1jsj = f1
+ x2 +

∑
j a2jsj = f2

,
x1, x2 ∈ Z
sj ∈ R+

As a vector equation,

(PI ) x = f +
∑

j

r jsj ,
x ∈ Z2

s ∈ Rn
+

In case (MIP) describes the optimal simplex tableau,
(x∗LP , s

∗
LP) = (f , 0).
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The two-row model

(MIP)


A x = b

x ≥ 0
xJ ∈ Z

(PI )


x = f +

∑
j r jsj

x ∈ Z2

s ∈ Rn
+

From (MIP) to (PI ) we dropped:

I all equality constraints except two

I the integrality constraints on all variables except two

I the nonegativity constraints on these two variables

Therefore,

I (PI ) is a relaxation of (MIP), i.e. (MIP) ⊆ (PI ).

I Any valid inequality for PI is valid for MIP.
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Problem statement



The two-row model

x = f +
∑

j r jsj
x ∈ Z2

sj ≥ 0

We want to separate

(x1, x2, s1, . . .) = (f1, f2, 0, . . .).

Consider

α1s1 + . . .+ αnsn ≥ 1,

with v i = f + 1
αi

r i , αi ≥ 0.
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We have a model PI :=

{ (x , s) : x = f +
∑

j r jsj
x ∈ Z2

sj ≥ 0 }

and the general form of a cut

α1s1 + . . .+ αnsn ≥ 1,

I How to compute a valid α?

I How to choose among valid
αs?
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Lattice-free sets – the LP intuition

Given x ∈ Z2, we want, for all s ∈ Rn
+ such that x = f + Rs, that

α1s1 + . . .+ αnsn ≥ 1

i.e. we want
min α1s1 + . . .+ αnsn
s.t. Rs = x − f

s ≥ 0

≥ 1

therefore, for all i , j , sx
i , s

x
j such that x = f + sx

i r i + sx
j r j , we must

have
sx
i αi + sx

j αj ≥ 1.
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Lattice-free sets – the intuition, for all x

For all x ∈ Z2,

for all i , j : x ∈ f + cone(r i , r j),
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Lattice-free sets – the intuition, for every cone

For all i , j ,

for all x ∈ Z2 ∩ (f + cone(r i , r j)),

sx
i αi + sx

j αj ≥ 1,

with sx
i , s

x
j : x = f + sx

i r i + sx
j r j .



Lattice-free sets – the set Xij

For all i , j ,

for all x ∈ Xij ,

sx
i αi + sx

j αj ≥ 1,

with sx
i , s

x
j : x = f + sx

i r i + sx
j r j .

I we can restrict x ∈ Z2 to
x ∈ Xij where Xij is the set of
the vertices of
Z2 ∩ (f + conv(r i , r j)).



Polarity

Let P ⊆ RN be a polyhedron and Q ⊆ RN its polar.
There is a correspondance between

Extreme point x ∈ P and Facet of Q: xTa ≥ 1
Extreme ray x ∈ P and Facet of Q: xTa ≥ 0

Facet of P: aT x ≥ 1 and Extreme point a ∈ Q
Facet of P: aT x ≥ 0 and Extreme ray a ∈ Q



Polarity, applied

I We have a polyhedron

conv(PI ) = conv
({

(x , s) ∈ Z2 × Rn
+ | x = f +

∑
j r jsj

})
.

I conv(PI ) ⊆ R2+n is of dimensionality n.

I We know the extreme points and rays of conv(PI ).

I We can build the polar Q ⊆ Rn of conv(PI ).

I We can optimize over Q to find facets conv(PI ).

Extreme point x ∈ conv(PI ) −→ Facet of Q: xTα ≥ 1
Extreme ray x ∈ conv(PI ) −→ Facet of Q: xTα ≥ 0

↓ ↓
Facet of conv(PI ): αT x ≥ 1 ←− Extreme point α ∈ Q
Facet of conv(PI ): αT x ≥ 0 ←− Extreme ray α ∈ Q
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Finding facets of conv PI

The polar of conv(PI ) is

Q = { α ∈ Rn
+ | ∀i , j , ∀x ∈ Xij , sx

i αi + sx
j αj ≥ 1 }.

We find facets of conv(PI ) by choosing an objective function cTα
and optimizing over Q:

min cTα
s.t. sx

i αi + sx
j αj ≥ 1, ∀i , j , ∀x ∈ Xij

α ≥ 0
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New developments



Complexity of writing the polar (1)

I For each cone, compute the integer hull.

I For each vertex of each integer hull, compute its
representation in the corresponding cone and write one
inequality of the polar.

1. The complexity is quadratic in the number of rays.

2. We have a polynomial (but possibly large) number of integer
vertices in each cone.
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The complexity of the polar – the intuition

PI = {(x , s) ∈ Z2 × Rn
+ :

x = f +
∑n

j=1 r jsj}

Q = { α ∈ Rn
+ | ∀i , j , ∀x ∈ Xij ,

sx
i αi + sx

j αj ≥ 1 }

Lα = conv
({

f , v1, . . . , vn
})

with v i = f + 1
αi

r i

Q ′ = { α ∈ Rn
+ | ∀i , ∀x ∈ Xi ,i+1,

sx
i αi + sx

i+1αi+1 ≥ 1 }
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αi ≤ λi
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Note: r j = λj
i r

i + λj
k rk



The complexity of the polar – the intuition

Lα = conv
({

f , v1, . . . , vn
})

with v i = f + 1
αi

r i

Q = { α ∈ Rn
+ |

∀i , ∀x ∈ Xi ,i+1,

sx
i αi + sx

i+1αi+1 ≥ 1

∀i : r i ∈ cone(r i−1, r i+1),

αi ≤ λi
i−1αi−1 + λi

i+1αi+1 }

I What is Q \ Q?



The complexity of the polar – the theory

Q = { α ∈ Rn
+ | ∀i , j , ∀x ∈ Xij , sx

i αi + sx
j αj ≥ 1 }

Q = { α ∈ Rn
+ |

∀i , ∀x ∈ Xi ,i+1, sx
i αi + sx

i+1αi+1 ≥ 1

∀i : r i ∈ cone(r i−1, r i+1), αi ≤ λi
i−1αi−1 + λi

i+1αi+1 }.

Theorem

Q ⊆ Q, and all vertices of Q are in Q.

Corollary

If c > 0,
min cTα
s.t. α ∈ Q

and
min cTα

s.t. α ∈ Q
share the same set of

optimal solutions.

If ci < 0, then
min cTα
s.t. α ∈ Q

is unbounded.
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Complexity of writing the polar (2)

I For each cone, compute the integer hull.

I For each integer point in each integer hull, compute its
representation in the corresponding cone and write one
inequality of of the polar.

1. The complexity is �����quadratic linear in the number of rays.

2. We have a polynomial (but possibly large) number of integer
vertices in each cone.



Can we avoid the integer hulls Xij?

Q = { α ∈ Rn
+ |

∀i , ∀x ∈ Xi ,i+1, sx
i αi + sx

i+1αi+1 ≥ 1

∀i : r i ∈ cone(r i−1, r i+1), αi ≤ λi
i−1αi−1 + λi

i+1αi+1 }

Q(S) = { α ∈ Rn
+ |

∀i , ∀x ∈ S ∩ (f + cone(r i , r i+1)), sx
i αi + sx

i+1αi+1 ≥ 1

∀i : r i ∈ cone(r i−1, r i+1), αi ≤ λi
i−1αi−1 + λi

i+1αi+1 },

with S ⊂ Z2.
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Separation algorithm

S := S0

do {
α := argmin cTα

s.t. α ∈ Q(S)

if α ∈ Q
OK, valid cut, exit.

else

Find a constraint of Q
violated by α.

Add constraints to S .
}
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The oracle

I possible in polynomial time for
any fixed dimension d
(Barvinok’s algorithm)

I we are in dimension two

I we know of integer points on
the boundary of Lα

I can we find a closed-form
formula?

Find an integer point in interior(Lα) or prove that Lα is lattice-free.
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The oracle: conv(T )

1. Consider the convex hull conv(T )
of the known tight integer points:
T := S ∩ boundary(Lα).

I we triangularize conv(T )

I we want to find integer points
on integer segments and
integer triangles

I possible with modulo
arithmetic

Find an integer point in interior(Lα) or prove that Lα is lattice-free.
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The oracle: conv(T ), continued

We therefore build w by solving the diophantine system{
λu1 + v1 = k1 det([u|v ])
λu2 + v2 = k2 det([u|v ])

, λ, k1, k2 ∈ Z

Find an integer point in conv(T ) or prove that conv(T ) is lattice-free.

Theorem

Let T be a triangle with vertices (0, u, v) that has interior lattice points
and such that gcd(u1, u2) = gcd(v1, v2) = 1. T has an interior lattice
point w such that w = λ

det([u|v ])u + 1
det([u|v ])v with λ ∈ Z+.
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The oracle: Main Theorem

2. Assume conv(T ) lattice-free.

Let us define:

I e jk := T k − T j

I ujk := e jk

gcd(e jk
1 ,e

jk
2 )

I U ijk := T i + ujk

Theorem

If interior(Lα) contains an integer point,
then at least one of these U ijk points must
also belong to interior(Lα).

Find an integer point in interior(Lα) or prove that Lα is lattice-free.
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Results



Preliminary Computational results

Average Average Average Max.
time CGLP time iter. iter.

per cut (ms) per cut (%time) per cut per cut
MIPLIB 3 18ms 99.84% 1.12 39
MIPLIB 2003 34ms 99.95% 1.17 30

two-row CPLEX
Average Average Average Average Average
# cuts # tight cuts %gc # cuts %gc

MIPLIB 3 2560.6 89.5 35.15% 80.3 51.85
MIPLIB 2003 2900.3 127.3 24.74% 161.4 40.86
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Conclusions

We have

I a fast separation for two-row cuts

I a closed-form procedure for guaranteeing validity

I means for driving towards deep cuts (with cTα)

We need

I a better definition of a “deep” cut

I good heuristics for the choice of the rows

I a way do choose a good initial basis
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Future directions



Future directions

I objective function

I basis choice: what is a good basis?

I basis choice: impact of a pivot on Q

I choice of the rows

I separation of x 6= x∗LP

I cut handling

I (algorithm complexity)

I strengthening (lifting)

I more than two rows


