A separation method for two-row cuts

Laurent Poirrier Joint work with Quentin Louveaux

Montefiore Institute, ULg

Thursday, April 7th, 2011

(ロ)、(型)、(E)、(E)、 E) の(の)

Background

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

The mixed integer linear problem

イロト イポト イヨト イヨト

э

The linear relaxation

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Cuts

・ロト ・四ト ・ヨト ・ヨト

æ

Single-row cuts

From one (re)formulation of the problem

$$\begin{array}{ll} \min & \overline{c}^T x\\ (\text{MIP}) & \text{s.t.} & \overline{A} x \geq \overline{b}\\ & x_J \in \mathbb{Z} \end{array}$$

we extract **one** constraint $\overline{A}_i x \geq \overline{b}_i$.

- Knowing that $x_j \in \mathbb{Z}$, we construct a stronger inequality.
- In some cases, the cut can separate a given MIP-infeasible point x*.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Single-row cuts

From one (re)formulation of the problem

$$\begin{array}{ll} \min & \overline{c}^T x\\ (\mathsf{MIP}) & \mathsf{s.t.} & \overline{A} x \geq \overline{b} \\ & x_J \in \mathbb{Z} \end{array}$$

we extract **one** constraint $\overline{A}_i x \ge \overline{b}_i$.

- ▶ Knowing that $x_j \in \mathbb{Z}$, we construct a stronger inequality.
- In some cases, the cut can separate a given MIP-infeasible point x*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Single-row cuts

From one (re)formulation of the problem

$$\begin{array}{ll} \min & \overline{c}^T x\\ (\mathsf{MIP}) & \mathsf{s.t.} & \overline{A} x \geq \overline{b} \\ & x_J \in \mathbb{Z} \end{array}$$

we extract **one** constraint $\overline{A}_i x \ge \overline{b}_i$.

- ▶ Knowing that $x_j \in \mathbb{Z}$, we construct a stronger inequality.
- In some cases, the cut can separate a given MIP-infeasible point x*.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

From one (re)formulation of the problem

$$(\mathsf{MIP}) \begin{array}{c} \min & \overline{c}^T x \\ \text{s.t.} & \overline{A} x = \overline{b} \\ & x \ge 0 \\ & x_J \in \mathbb{Z} \end{array}$$

we extract two constraints

$$\begin{array}{rcl} x_1 & + \sum_j \overline{a}_{1j} s_j & = & f_1 \\ & + x_2 + \sum_j \overline{a}_{2j} s_j & = & f_2 \end{array}, \qquad \begin{array}{rcl} x_1, x_2 \in \mathbb{Z} \\ & s_j \in \mathbb{R}_+ \end{array}$$

As a vector equation,

$$(P_l) x = f + \sum_j r^j s_j, x \in \mathbb{R}^n_+$$

From one (re)formulation of the problem

$$(\mathsf{MIP}) \begin{array}{c} \min & \overline{c}^T x \\ \text{s.t.} & \overline{A} x = \overline{b} \\ x \ge 0 \\ x_J \in \mathbb{Z} \end{array}$$

we extract two constraints

$$egin{array}{rcl} x_1&+\sum_j \overline{a}_{1j}s_j&=&f_1\ &+x_2+\sum_j \overline{a}_{2j}s_j&=&f_2\end{array}, & x_1,x_2\in\mathbb{Z}\ &s_j\in\mathbb{R}_+ \end{array}$$

As a vector equation,

$$(P_l) \qquad x = f + \sum_j r^j s_j, \qquad \begin{array}{l} x \in \mathbb{Z}^2 \\ s \in \mathbb{R}^n_+ \end{array}$$

From one (re)formulation of the problem

$$(\mathsf{MIP}) \begin{array}{c} \min & \overline{c}^T x \\ \text{s.t.} & \overline{A} x = \overline{b} \\ x \ge 0 \\ x_J \in \mathbb{Z} \end{array}$$

we extract two constraints

$$egin{array}{rcl} x_1&+\sum_j\overline{a}_{1j}s_j&=&f_1\ &+x_2+\sum_j\overline{a}_{2j}s_j&=&f_2\end{array}, \qquad &x_1,x_2\in\mathbb{Z}\ &s_j\in\mathbb{R}_+ \end{array}$$

As a vector equation,

$$(P_l) x = f + \sum_j r^j s_j, x \in \mathbb{Z}^2 s \in \mathbb{R}^n_+$$

From one (re)formulation of the problem

$$(\mathsf{MIP}) \begin{array}{c} \min & \overline{c}^T x \\ \text{s.t.} & \overline{A} x = \overline{b} \\ x \ge 0 \\ x_J \in \mathbb{Z} \end{array}$$

we extract two constraints

$$egin{array}{rcl} x_1&+\sum_j\overline{a}_{1j}s_j&=&f_1\ &+x_2+\sum_j\overline{a}_{2j}s_j&=&f_2\end{array}, & x_1,x_2\in\mathbb{Z}\ &s_j\in\mathbb{R}_+ \end{array}$$

As a vector equation,

$$(P_I) x = f + \sum_j r^j s_j, x \in \mathbb{Z}^2 s \in \mathbb{R}^n_+$$

$$(\mathsf{MIP}) \begin{cases} \overline{A}x = \overline{b} \\ x \ge 0 \\ x_J \in \mathbb{Z} \end{cases} \qquad (P_I) \begin{cases} x = f + \sum_j r^j s_j \\ x \in \mathbb{Z}^2 \\ s \in \mathbb{R}^n_+ \end{cases}$$

From (MIP) to (P_I) we dropped:

- all equality constraints except two
- the integrality constraints on all variables except two
- the nonegativity constraints on these two variables

Therefore,

• (P_I) is a relaxation of (MIP), i.e. (MIP) $\subseteq (P_I)$.

$$(\mathsf{MIP}) \begin{cases} \overline{A}x = \overline{b} \\ x \ge 0 \\ x_J \in \mathbb{Z} \end{cases} \qquad (P_I) \begin{cases} x = f + \sum_j r^j s_j \\ x \in \mathbb{Z}^2 \\ s \in \mathbb{R}^n_+ \end{cases}$$

From (MIP) to (P_I) we dropped:

- all equality constraints except two
- the integrality constraints on all variables except two
- the nonegativity constraints on these two variables

Therefore,

• (P_I) is a relaxation of (MIP), i.e. (MIP) $\subseteq (P_I)$.

$$(\mathsf{MIP}) \begin{cases} \overline{A}x = \overline{b} \\ x \ge 0 \\ x_J \in \mathbb{Z} \end{cases} \qquad (P_I) \begin{cases} x = f + \sum_j r^j s_j \\ x \in \mathbb{Z}^2 \\ s \in \mathbb{R}^n_+ \end{cases}$$

From (MIP) to (P_I) we dropped:

- all equality constraints except two
- the integrality constraints on all variables except two
- the nonegativity constraints on these two variables

Therefore,

• (P_I) is a relaxation of (MIP), i.e. (MIP) $\subseteq (P_I)$.

$$(\mathsf{MIP}) \begin{cases} \overline{A}x = \overline{b} \\ x \ge 0 \\ x_J \in \mathbb{Z} \end{cases} \qquad (P_I) \begin{cases} x = f + \sum_j r^j s_j \\ x \in \mathbb{Z}^2 \\ s \in \mathbb{R}^n_+ \end{cases}$$

From (MIP) to (P_I) we dropped:

- all equality constraints except two
- the integrality constraints on all variables except two
- the nonegativity constraints on these two variables

Therefore,

• (P_I) is a relaxation of (MIP), i.e. (MIP) $\subseteq (P_I)$.

$$(\mathsf{MIP}) \begin{cases} \overline{A}x = \overline{b} \\ x \ge 0 \\ x_J \in \mathbb{Z} \end{cases} \qquad (P_I) \begin{cases} x = f + \sum_j r^j s_j \\ x \in \mathbb{Z}^2 \\ s \in \mathbb{R}^n_+ \end{cases}$$

From (MIP) to (P_I) we dropped:

- all equality constraints except two
- the integrality constraints on all variables except two
- the nonegativity constraints on these two variables

Therefore,

• (P_I) is a relaxation of (MIP), i.e. (MIP) $\subseteq (P_I)$.

► Any valid inequality for *P*₁ is valid for MIP.

$$(\mathsf{MIP}) \begin{cases} \overline{A}x = \overline{b} \\ x \ge 0 \\ x_J \in \mathbb{Z} \end{cases} \qquad (P_I) \begin{cases} x = f + \sum_j r^j s_j \\ x \in \mathbb{Z}^2 \\ s \in \mathbb{R}^n_+ \end{cases}$$

From (MIP) to (P_I) we dropped:

- all equality constraints except two
- the integrality constraints on all variables except two
- the nonegativity constraints on these two variables

Therefore,

• (P_I) is a relaxation of (MIP), i.e. (MIP) $\subseteq (P_I)$.

Problem statement

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

 $\begin{array}{rcl} x & = & f + \sum_j r^j s_j \\ x & \in & \mathbb{Z}^2 \\ s_j & \geq & 0 \end{array}$

We want to separate

$$(x_1, x_2, s_1, \ldots) = (f_1, f_2, 0, \ldots).$$

Consider

 $lpha_1 s_1 + \ldots + lpha_n s_n \ge 1,$ with $v^i = f + rac{1}{lpha_i} r^i$, $lpha_i \ge 0.$

 $\begin{array}{rcl} x & = & f + \sum_j r^j s_j \\ x & \in & \mathbb{Z}^2 \\ s_j & \geq & 0 \end{array}$

We want to separate

$$(x_1, x_2, s_1, \ldots) = (f_1, f_2, 0, \ldots).$$

Consider

 $lpha_1 s_1 + \ldots + lpha_n s_n \ge 1,$ with $v^i = f + rac{1}{lpha_i} r^i$, $lpha_i \ge 0.$

$$\begin{array}{rcl} x & = & f + \sum_j r^j s_j \\ x & \in & \mathbb{Z}^2 \\ s_j & \geq & 0 \end{array}$$

We want to separate

$$(x_1, x_2, s_1, \ldots) = (f_1, f_2, 0, \ldots).$$

Consider

$$lpha_1 s_1 + \ldots + lpha_n s_n \ge 1,$$

with $v^i = f + rac{1}{lpha_i} r^i$, $lpha_i \ge 0.$

◆□> ◆□> ◆三> ◆三> 三三 のへぐ

The two-row separation problem

We have a model $P_I :=$ 0 0 $\begin{array}{rcl} \{ (x,s): & x & = & f + \sum_j r^j s_j \\ & x & \in & \mathbb{Z}^2 \\ & s_j & \geq & 0 \end{array}$ r^3 v^1 , r^1 v^3 v^2 0 0 and the general form of a cut L_{α} $\alpha_1 s_1 + \ldots + \alpha_n s_n \geq 1$, 0 x_2 n^{\prime} 0 x_1

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

The two-row separation problem

We have a model $P_I :=$ 0 0 0 $\begin{array}{rcl} \{ (x,s): & x & = & f + \sum_j r^j s_j \\ & x & \in & \mathbb{Z}^2 \\ & s_j & \geq & 0 \end{array}$ r^3 v^1 , r^1 v^3 v^2 0 0 and the general form of a cut L_{α} $\alpha_1 s_1 + \ldots + \alpha_n s_n \geq 1$, 0 x_2 n^{\prime} • How to compute a valid α ? 0 \mathcal{X}_1

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

The two-row separation problem

We have a model $P_I :=$ 0 0 0 $\begin{array}{rcl} \{ (x,s): & x & = & f + \sum_j r^j s_j \\ & x & \in & \mathbb{Z}^2 \\ & s_j & \geq & 0 \end{array}$ r^3 r^1 v^3 v^2 v^1 0 0 and the general form of a cut L_{α} $\alpha_1 s_1 + \ldots + \alpha_n s_n > 1$ 0 0 x_2 n^{\prime} • How to compute a valid α ? 0 \mathcal{X}_1 How to choose among valid $\alpha s?$

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Lattice-free sets - the LP intuition

Given $\overline{x} \in \mathbb{Z}^2$, we want, for all $s \in \mathbb{R}^n_+$ such that $\overline{x} = f + Rs$, that $\alpha_1 s_1 + \ldots + \alpha_n s_n \geq 1$

i.e. we want

min
$$\alpha_1 s_1 + \ldots + \alpha_n s_n \ge 1$$

s.t. $Rs = \overline{x} - f$
 $s \ge 0$

therefore, for all $i, j, s_i^{\overline{x}}, s_j^{\overline{x}}$ such that $\overline{x} = f + s_i^{\overline{x}} r^i + s_j^{\overline{x}} r^j$, we must have

$$s_i^{\overline{\chi}} \alpha_i + s_j^{\overline{\chi}} \alpha_j \ge 1.$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Lattice-free sets - the LP intuition

Given $\overline{x} \in \mathbb{Z}^2$, we want, for all $s \in \mathbb{R}^n_+$ such that $\overline{x} = f + Rs$, that

 $\alpha_1 s_1 + \ldots + \alpha_n s_n \geq 1$

i.e. we want

$$\begin{array}{ll} \min & \alpha_1 s_1 + \ldots + \alpha_n s_n & \geq 1 \\ \text{s.t.} & Rs &= \overline{x} - f \\ & s &\geq 0 \end{array}$$

therefore, for all i, j, s^x_i, s^x_j such that $\overline{x} = f + s^x_i r^i + s^x_j r^j$, we must have

 $s_i^{\overline{X}}\alpha_i + s_j^{\overline{X}}\alpha_j \ge 1.$

Lattice-free sets - the LP intuition

Given $\overline{x} \in \mathbb{Z}^2$, we want, for all $s \in \mathbb{R}^n_+$ such that $\overline{x} = f + Rs$, that

 $\alpha_1 s_1 + \ldots + \alpha_n s_n \geq 1$

i.e. we want

$$\begin{array}{ll} \min & \alpha_1 s_1 + \ldots + \alpha_n s_n & \geq 1 \\ \text{s.t.} & Rs &= \overline{x} - f \\ & s &\geq 0 \end{array}$$

therefore, for all $i, j, s_i^{\overline{x}}, s_j^{\overline{x}}$ such that $\overline{x} = f + s_i^{\overline{x}} r^i + s_j^{\overline{x}} r^j$, we must have

$$s_i^{\overline{x}}\alpha_i + s_j^{\overline{x}}\alpha_j \ge 1.$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

0 0 0 Given $\overline{x} \in \mathbb{Z}^2$. v^2 0 for all $i, j : \overline{x} \in f + \operatorname{cone}(r^i, r^j)$, $s_i^{\overline{x}}\alpha_i + s_i^{\overline{x}}\alpha_i \geq 1,$ x_2 with $s_i^{\overline{x}}, s_i^{\overline{x}} : \overline{x} = f + s_i^{\overline{x}} r^i + s_i^{\overline{x}} r^j$. 11 \mathcal{X}_1

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● の Q (2)

0

0

0 0 0 Given $\overline{x} \in \mathbb{Z}^2$. v^2 0 for all $i, j : \overline{x} \in f + \operatorname{cone}(r^i, r^j)$, $s_i^{\overline{x}}\alpha_i + s_i^{\overline{x}}\alpha_i \geq 1,$ x_2 with $s_i^{\overline{x}}, s_i^{\overline{x}} : \overline{x} = f + s_i^{\overline{x}} r^i + s_i^{\overline{x}} r^j$. ,5 r^5 x_1

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 _ のへで

0

0

0 0 0 Given $\overline{x} \in \mathbb{Z}^2$. v^1 , r^1 0 for all $i, j : \overline{x} \in f + \operatorname{cone}(r^i, r^j)$, $s_i^{\overline{x}}\alpha_i + s_i^{\overline{x}}\alpha_i \geq 1,$ x_2 with $s_i^{\overline{x}}, s_i^{\overline{x}} : \overline{x} = f + s_i^{\overline{x}} r^i + s_i^{\overline{x}} r^j$. 11 \mathcal{X}_1

◆□> ◆□> ◆三> ◆三> ・三 ・ のへで

0

0

0 0 0 Given $\overline{x} \in \mathbb{Z}^2$. v^1 - r^1 0 for all $i, j : \overline{x} \in f + \operatorname{cone}(r^i, r^j)$, $s_i^{\overline{x}}\alpha_i + s_i^{\overline{x}}\alpha_i \geq 1,$ x_2 with $s_i^{\overline{x}}, s_i^{\overline{x}} : \overline{x} = f + s_i^{\overline{x}} r^i + s_i^{\overline{x}} r^j$. ,5 r^5 \mathcal{X}_1

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

0

0

Lattice-free sets – the intuition, for all x

0 0 0 For all $x \in \mathbb{Z}^2$. r^1 v^2 v^1 0 0 for all $i, j : x \in f + \operatorname{cone}(r^i, r^j)$, $s_i^{\mathbf{x}} \alpha_i + s_i^{\mathbf{x}} \alpha_i \geq 1$, 0 x_2 with $s_{i}^{x}, s_{i}^{x} : x = f + s_{i}^{x}r^{i} + s_{i}^{x}r^{j}$. ,5 n^{\prime} r^5 0 x_1

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Lattice-free sets - the intuition, for every cone

0 0 0 For all *i*, *j*, v^2 0 for all $x \in \mathbb{Z}^2 \cap (f + \operatorname{cone}(r^i, r^j))$, $s_i^{\mathbf{x}} \alpha_i + s_i^{\mathbf{x}} \alpha_i \geq 1$, x_2 with $s_{i}^{x}, s_{i}^{x} : x = f + s_{i}^{x}r^{i} + s_{i}^{x}r^{j}$. ,5 r^5 x_1

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ(?)

Lattice-free sets – the set \mathcal{X}_{ii}

For all i, j,

for all $x \in \mathcal{X}_{ij}$,

$$s_i^x \alpha_i + s_j^x \alpha_j \ge 1,$$

with $s_{i}^{x}, s_{j}^{x} : x = f + s_{i}^{x}r^{i} + s_{j}^{x}r^{j}$.

We can restrict x ∈ Z² to x ∈ X_{ij} where X_{ij} is the set of the vertices of Z² ∩ (f + conv(rⁱ, r^j)).

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Polarity

Let $P \subseteq \mathbb{R}^N$ be a polyhedron and $Q \subseteq \mathbb{R}^N$ its polar. There is a correspondance between

> Extreme point $\overline{x} \in P$ and Facet of $Q: \overline{x}^T a \ge 1$ Extreme ray $\overline{x} \in P$ and Facet of $Q: \overline{x}^T a \ge 0$

> Facet of *P*: $\overline{a}^T x \ge 1$ and Extreme point $\overline{a} \in Q$ Facet of *P*: $\overline{a}^T x \ge 0$ and Extreme ray $\overline{a} \in Q$

► We have a polyhedron $\operatorname{conv}(P_I) = \operatorname{conv}\left(\left\{(x, s) \in \mathbb{Z}^2 \times \mathbb{R}^n_+ \mid x = f + \sum_j r^j s_j\right\}\right).$

• $\operatorname{conv}(P_I) \subseteq \mathbb{R}^{2+n}$ is of dimensionality n.

- We know the extreme points and rays of conv(P_I).
- We can build the polar $Q \subseteq \mathbb{R}^n$ of conv (P_l) .
- We can optimize over Q to find facets conv(P_I)

Extreme point $\overline{x} \in \operatorname{conv}(P_I)$	\longrightarrow	Facet of $Q: \overline{x}^T \alpha \ge 1$
Extreme ray $\overline{x} \in \operatorname{conv}(P_I)$		Facet of $Q: \overline{x}^T \alpha \ge 0$
Facet of conv(P_I): $\overline{\alpha}^T x \geq 1$		Extreme point $\overline{lpha} \in \mathcal{Q}$
Facet of conv(P_I): $\overline{\alpha}^T x \ge 0$		Extreme ray $\overline{lpha}\in {\pmb{Q}}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

► We have a polyhedron $\operatorname{conv}(P_I) = \operatorname{conv}\left(\left\{(x, s) \in \mathbb{Z}^2 \times \mathbb{R}^n_+ \mid x = f + \sum_j r^j s_j\right\}\right).$

• $\operatorname{conv}(P_l) \subseteq \mathbb{R}^{2+n}$ is of dimensionality *n*.

• We know the extreme points and rays of $conv(P_I)$.

• We can build the polar $Q \subseteq \mathbb{R}^n$ of conv (P_I) .

We can optimize over Q to find facets conv(P_I)

Facet of $Q: \overline{x}^T \alpha \geq 1$
Facet of $Q: \overline{x}^T \alpha \ge 0$
Extreme point $\overline{lpha} \in {oldsymbol Q}$
Extreme ray $\overline{lpha}\in {\pmb{\mathcal{Q}}}$
\rightarrow \rightarrow \leftarrow

► We have a polyhedron $\operatorname{conv}(P_I) = \operatorname{conv}\left(\left\{(x,s) \in \mathbb{Z}^2 \times \mathbb{R}^n_+ \mid x = f + \sum_j r^j s_j\right\}\right).$

• $\operatorname{conv}(P_l) \subseteq \mathbb{R}^{2+n}$ is of dimensionality *n*.

- We know the extreme points and rays of $conv(P_I)$.
- We can build the polar $Q \subseteq \mathbb{R}^n$ of $\operatorname{conv}(P_I)$.

We can optimize over Q to find facets conv(P_I).

Extreme point $\overline{x} \in \operatorname{conv}(P_I) \longrightarrow$ Facet of $Q: \overline{x}^T \alpha \ge 1$ Extreme ray $\overline{x} \in \operatorname{conv}(P_I) \longrightarrow$ Facet of $Q: \overline{x}^T \alpha \ge 0$

► We have a polyhedron $\operatorname{conv}(P_I) = \operatorname{conv}\left(\left\{(x,s) \in \mathbb{Z}^2 \times \mathbb{R}^n_+ \mid x = f + \sum_j r^j s_j\right\}\right).$

• $\operatorname{conv}(P_l) \subseteq \mathbb{R}^{2+n}$ is of dimensionality *n*.

- We know the extreme points and rays of $conv(P_I)$.
- We can build the polar $Q \subseteq \mathbb{R}^n$ of $\operatorname{conv}(P_I)$.
- We can optimize over Q to find facets $conv(P_I)$.

Extreme point $\overline{x} \in \operatorname{conv}(P_I)$ \longrightarrow Facet of $Q: \overline{x}^T \alpha \ge 1$ Extreme ray $\overline{x} \in \operatorname{conv}(P_I)$ \longrightarrow Facet of $Q: \overline{x}^T \alpha \ge 0$ $\downarrow \downarrow$ $\downarrow \downarrow$ Facet of $\operatorname{conv}(P_I): \overline{\alpha}^T x \ge 1$ \longleftarrow Extreme point $\overline{\alpha} \in Q$ Facet of $\operatorname{conv}(P_I): \overline{\alpha}^T x \ge 0$ \longleftarrow

► We have a polyhedron $\operatorname{conv}(P_I) = \operatorname{conv}\left(\left\{(x,s) \in \mathbb{Z}^2 \times \mathbb{R}^n_+ \mid x = f + \sum_j r^j s_j\right\}\right).$

• $\operatorname{conv}(P_I) \subseteq \mathbb{R}^{2+n}$ is of dimensionality *n*.

- We know the extreme points and rays of $conv(P_I)$.
- We can build the polar $Q \subseteq \mathbb{R}^n$ of $\operatorname{conv}(P_I)$.
- We can optimize over Q to find facets conv (P_I) .

 $\begin{array}{rcl} \mbox{Extreme point } \overline{x} \in \mbox{conv}(P_I) & \longrightarrow & \mbox{Facet of } Q \colon \overline{x}^T \alpha \geq 1 \\ \mbox{Extreme ray } \overline{x} \in \mbox{conv}(P_I) & \longrightarrow & \mbox{Facet of } Q \colon \overline{x}^T \alpha \geq 0 \end{array}$

Facet of conv(
$$P_I$$
): $\overline{\alpha}^T x \ge 1 \quad \longleftarrow \quad \text{Extreme point } \overline{\alpha} \in Q$
Facet of conv(P_I): $\overline{\alpha}^T x \ge 0 \quad \longleftarrow \quad \text{Extreme ray } \overline{\alpha} \in Q$

Finding facets of conv P_I

The polar of $conv(P_I)$ is

$$Q = \{ \alpha \in \mathbb{R}^n_+ \mid \forall i, j, \ \forall x \in \mathcal{X}_{ij}, \ s_i^x \alpha_i + s_j^x \alpha_j \ge 1 \}.$$

We find facets of conv(P_I) by choosing an objective function $c^T \alpha$ and optimizing over Q:

$$\begin{array}{ll} \min & c^{\mathcal{T}}\alpha \\ \text{s.t.} & s_i^x \alpha_i + s_j^x \alpha_j \geq 1, \quad \forall i, j, \; \forall x \in \mathcal{X}_{ij} \\ & \alpha \geq 0 \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Finding facets of conv P_I

The polar of $conv(P_I)$ is

$$Q = \{ \alpha \in \mathbb{R}^n_+ \mid \forall i, j, \forall x \in \mathcal{X}_{ij}, s_i^x \alpha_i + s_j^x \alpha_j \ge 1 \}.$$

We find facets of $conv(P_I)$ by choosing an objective function $c^T \alpha$ and optimizing over Q:

$$\begin{array}{ll} \min & c^{\mathcal{T}}\alpha \\ \text{s.t.} & s_i^x \alpha_i + s_j^x \alpha_j \geq 1, \quad \forall i, j, \ \forall x \in \mathcal{X}_{ij} \\ \alpha \geq 0 \end{array}$$

New developments

<□ > < @ > < E > < E > E のQ @

- ► For each cone, compute the integer hull.
- For each vertex of each integer hull, compute its representation in the corresponding cone and write one inequality of the polar.
- 1. The complexity is quadratic in the number of rays.
- 2. We have a polynomial (but possibly large) number of integer vertices in each cone.

▶ For each cone, compute the integer hull.

- For each vertex of each integer hull, compute its representation in the corresponding cone and write one inequality of the polar.
- 1. The complexity is quadratic in the number of rays.
- 2. We have a polynomial (but possibly large) number of integer vertices in each cone.

- ▶ For each cone, compute the integer hull.
- For each vertex of each integer hull, compute its representation in the corresponding cone and write one inequality of the polar.
- 1. The complexity is quadratic in the number of rays.
- 2. We have a polynomial (but possibly large) number of integer vertices in each cone.

- ▶ For each cone, compute the integer hull.
- For each vertex of each integer hull, compute its representation in the corresponding cone and write one inequality of the polar.
- 1. The complexity is quadratic in the number of rays.
- 2. We have a polynomial (but possibly large) number of integer vertices in each cone.

- ▶ For each cone, compute the integer hull.
- For each vertex of each integer hull, compute its representation in the corresponding cone and write one inequality of the polar.
- 1. The complexity is quadratic in the number of rays.
- 2. We have a polynomial (but possibly large) number of integer vertices in each cone.

$$P_{l} = \{(x, s) \in \mathbb{Z}^{2} \times \mathbb{R}^{n}_{+} :$$

$$x = f + \sum_{j=1}^{n} r^{j} s_{j}\}$$

$$Q = \{\alpha \in \mathbb{R}^{n}_{+} \mid \forall i, j, \forall x \in \mathcal{X}_{ij},$$

$$s_{i}^{x} \alpha_{i} + s_{j}^{x} \alpha_{j} \geq 1\}$$

$$L_{\alpha} = \operatorname{conv}\left(\{f, v^{1}, \dots, v^{n}\}\right)$$
with $v^{i} = f + \frac{1}{\alpha_{i}}r^{i}$

$$Q' = \{\alpha \in \mathbb{R}^{n}_{+} \mid \forall i, \forall x \in \mathcal{X}_{i,i+1},$$

$$s_{i}^{x} \alpha_{i} + s_{i+1}^{x} \alpha_{i+1} \geq 1\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$P_{l} = \{(x, s) \in \mathbb{Z}^{2} \times \mathbb{R}^{n}_{+} :$$

$$x = f + \sum_{j=1}^{n} r^{j} s_{j}\}$$

$$Q = \{\alpha \in \mathbb{R}^{n}_{+} \mid \forall i, j, \forall x \in \mathcal{X}_{ij},$$

$$s_{i}^{x} \alpha_{i} + s_{j}^{x} \alpha_{j} \geq 1\}$$

$$L_{\alpha} = \operatorname{conv}\left(\{f, v^{1}, \dots, v^{n}\}\right)$$
with $v^{i} = f + \frac{1}{\alpha_{i}}r^{i}$

$$Q' = \{\alpha \in \mathbb{R}^{n}_{+} \mid \forall i, \forall x \in \mathcal{X}_{i,i+1},$$

$$s_{i}^{x} \alpha_{i} + s_{i+1}^{x} \alpha_{i+1} \geq 1\}$$

くしゃ (中)・(中)・(中)・(日)

$$P_{l} = \{(x, s) \in \mathbb{Z}^{2} \times \mathbb{R}^{n}_{+} :$$

$$x = f + \sum_{j=1}^{n} r^{j} s_{j}\}$$

$$Q = \{\alpha \in \mathbb{R}^{n}_{+} \mid \forall i, j, \forall x \in \mathcal{X}_{ij},$$

$$s_{i}^{x} \alpha_{i} + s_{j}^{x} \alpha_{j} \geq 1\}$$

$$L_{\alpha} = \operatorname{conv}\left(\{f, v^{1}, \dots, v^{n}\}\right)$$
with $v^{i} = f + \frac{1}{\alpha_{i}}r^{i}$

$$Q' = \{\alpha \in \mathbb{R}^{n}_{+} \mid \forall i, \forall x \in \mathcal{X}_{i,i+1},$$

$$s_{i}^{x} \alpha_{i} + s_{i+1}^{x} \alpha_{i+1} \geq 1\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

0

0

$$L_{\alpha} = \operatorname{conv} \left(\left\{ f, v^{1}, \dots, v^{n} \right\} \right)$$
with $v^{i} = f + \frac{1}{\alpha_{i}} r^{i}$

$$\overline{Q} = \left\{ \alpha \in \mathbb{R}^{n}_{+} \mid \\ \forall i, \forall x \in \mathcal{X}_{i,i+1}, \\ s^{x}_{i} \alpha_{i} + s^{x}_{i+1} \alpha_{i+1} \geq 1 \\ \forall i : r^{i} \in \operatorname{cone}(r^{i-1}, r^{i+1}), \quad x_{2} \\ \alpha_{i} \leq \lambda^{i}_{i-1} \alpha_{i-1} + \lambda^{i}_{i+1} \alpha_{i+1} \right\}$$
Note: $r^{j} = \lambda^{j}_{i} r^{i} + \lambda^{j}_{k} r^{k}$

◆□ ▶ ◆■ ▶ ◆ ■ ◆ ● ◆ ● ◆ ● ◆

o 1

$$L_{\alpha} = \operatorname{conv} \left(\left\{ f, v^{1}, \dots, v^{n} \right\} \right)$$
with $v^{i} = f + \frac{1}{\alpha_{i}} r^{i}$

$$\overline{Q} = \left\{ \alpha \in \mathbb{R}^{n}_{+} \mid \\ \forall i, \forall x \in \mathcal{X}_{i,i+1}, \\ s^{x}_{i} \alpha_{i} + s^{x}_{i+1} \alpha_{i+1} \geq 1 \\ \forall i : r^{i} \in \operatorname{cone}(r^{i-1}, r^{i+1}), \\ \alpha_{i} \leq \lambda^{i}_{i-1} \alpha_{i-1} + \lambda^{i}_{i+1} \alpha_{i+1} \right\}$$

$$v^{3}$$

$$v^{3}$$

$$v^{1}$$

$$v^{1}$$

$$r^{1}$$

$$v^{2}$$

$$L_{\alpha}$$

$$v^{4}$$

$$v^{5}$$

$$r^{5}$$

$$\alpha_{i} \leq \lambda^{i}_{i-1} \alpha_{i-1} + \lambda^{i}_{i+1} \alpha_{i+1} \right\}$$

0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• What is $Q \setminus \overline{Q}$?

$$Q = \{ \alpha \in \mathbb{R}^{n}_{+} \mid \forall i, j, \forall x \in \mathcal{X}_{ij}, \qquad s^{x}_{i} \alpha_{i} + s^{x}_{j} \alpha_{j} \ge 1 \}$$

$$\overline{Q} = \{ \alpha \in \mathbb{R}^{n}_{+} \mid \qquad \qquad \forall i, \forall x \in \mathcal{X}_{i,i+1}, \qquad s^{x}_{i} \alpha_{i} + s^{x}_{i+1} \alpha_{i+1} \ge 1$$

$$\forall i: r^{i} \in \operatorname{cone}(r^{i-1}, r^{i+1}), \quad \alpha_{i} \le \lambda^{i}_{i-1} \alpha_{i-1} + \lambda^{i}_{i+1} \alpha_{i+1} \}.$$

Theorem

 $\overline{Q} \subseteq Q$, and all vertices of Q are in \overline{Q} .

Corollary

If c > 0, $\min_{s.t.} c^{T} \alpha$ and $\min_{s.t.} c^{T} \alpha$ share the same set of optimal solutions. If $c_i < 0$, then $\min_{s.t.} c^{T} \alpha$ is unbounded.

$$Q = \{ \alpha \in \mathbb{R}^n_+ \mid \forall i, j, \forall x \in \mathcal{X}_{ij}, \quad s_i^x \alpha_i + s_j^x \alpha_j \ge 1 \}$$

$$\overline{Q} = \{ \alpha \in \mathbb{R}^n_+ \mid \\ \forall i, \forall x \in \mathcal{X}_{i,i+1}, \quad s_i^x \alpha_i + s_{i+1}^x \alpha_{i+1} \ge 1 \\ \forall i : r^i \in \operatorname{cone}(r^{i-1}, r^{i+1}), \quad \alpha_i \le \lambda_{i-1}^i \alpha_{i-1} + \lambda_{i+1}^i \alpha_{i+1} \}.$$

Theorem

 $\overline{Q} \subseteq Q$, and all vertices of Q are in \overline{Q} .

Corollary

If c > 0, $\min_{s.t.} c^{T} \alpha$ and $\min_{s.t.} c^{T} \alpha$ share the same set of optimal solutions. If $c_{i} < 0$, then $\min_{s.t.} c^{T} \alpha$ is unbounded.

$$Q = \{ \alpha \in \mathbb{R}^{n}_{+} \mid \forall i, j, \forall x \in \mathcal{X}_{ij}, \quad s_{i}^{x} \alpha_{i} + s_{j}^{x} \alpha_{j} \geq 1 \}$$

$$\overline{Q} = \{ \alpha \in \mathbb{R}^{n}_{+} \mid \\ \forall i, \forall x \in \mathcal{X}_{i,i+1}, \quad s_{i}^{x} \alpha_{i} + s_{i+1}^{x} \alpha_{i+1} \geq 1 \\ \forall i : r^{i} \in \operatorname{cone}(r^{i-1}, r^{i+1}), \quad \alpha_{i} \leq \lambda_{i-1}^{i} \alpha_{i-1} + \lambda_{i+1}^{i} \alpha_{i+1} \}.$$

Theorem

 $\overline{Q} \subseteq Q$, and all vertices of Q are in \overline{Q} .

Corollary

If c > 0, $\begin{array}{c} \min & c^{T} \alpha \\ \text{s.t.} & \alpha \in Q \end{array}$ and $\begin{array}{c} \min & c^{T} \alpha \\ \text{s.t.} & \alpha \in \overline{Q} \end{array}$ share the same set of optimal solutions. If $c_{i} < 0$, then $\begin{array}{c} \min & c^{T} \alpha \\ \text{s.t.} & \alpha \in Q \end{array}$ is unbounded.

$$Q = \{ \alpha \in \mathbb{R}^{n}_{+} \mid \forall i, j, \forall x \in \mathcal{X}_{ij}, \qquad s^{x}_{i} \alpha_{i} + s^{x}_{j} \alpha_{j} \ge 1 \}$$

$$\overline{Q} = \{ \alpha \in \mathbb{R}^{n}_{+} \mid \\ \forall i, \forall x \in \mathcal{X}_{i,i+1}, \qquad s^{x}_{i} \alpha_{i} + s^{x}_{i+1} \alpha_{i+1} \ge 1 \\ \forall i: r^{i} \in \operatorname{cone}(r^{i-1}, r^{i+1}), \quad \alpha_{i} \le \lambda^{i}_{i-1} \alpha_{i-1} + \lambda^{i}_{i+1} \alpha_{i+1} \}.$$

Theorem

 $\overline{Q} \subseteq Q$, and all vertices of Q are in \overline{Q} .

Corollary

If c > 0, $\begin{array}{c} \min & c^T \alpha \\ \text{s.t.} & \alpha \in Q \end{array}$ and $\begin{array}{c} \min & c^T \alpha \\ \text{s.t.} & \alpha \in \overline{Q} \end{array}$ share the same set of optimal solutions. If $c_i < 0$, then $\begin{array}{c} \min & c^T \alpha \\ \text{s.t.} & \alpha \in Q \end{array}$ is unbounded.

- ▶ For each cone, compute the integer hull.
- For each integer point in each integer hull, compute its representation in the corresponding cone and write one inequality of of the polar.
- 1. The complexity is quadratic linear in the number of rays.
- 2. We have a polynomial (but possibly large) number of integer vertices in each cone.

Can we avoid the integer hulls \mathcal{X}_{ij} ?

 $\overline{Q} = \{ \alpha \in \mathbb{R}^n_+ \mid$ $\forall i, \forall x \in \mathcal{X}_{i,i+1},$ $s_i^x \alpha_i + s_{i+1}^x \alpha_{i+1} \ge 1$ $\forall i: r^i \in \operatorname{cone}(r^{i-1}, r^{i+1}),$ $\alpha_i \leq \lambda_{i-1}^i \alpha_{i-1} + \lambda_{i+1}^i \alpha_{i+1} \}$

◆ロト ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ● 臣 ● のへで

Can we avoid the integer hulls \mathcal{X}_{ij} ?

$$\begin{split} \overline{Q} &= \{ \alpha \in \mathbb{R}_{+}^{n} \mid \\ &\forall i, \forall x \in \mathcal{X}_{i,i+1}, \\ &\forall i : r^{i} \in \operatorname{cone}(r^{i-1}, r^{i+1}), \\ \end{split}$$

$$\begin{split} & S_{i}^{x} \alpha_{i} + S_{i+1}^{x} \alpha_{i+1} \geq 1 \\ & \alpha_{i} \leq \lambda_{i-1}^{i} \alpha_{i-1} + \lambda_{i+1}^{i} \alpha_{i+1} \\ \end{cases} \\ \overline{Q}(S) &= \{ \alpha \in \mathbb{R}_{+}^{n} \mid \\ & \forall i, \forall x \in S \cap (f + \operatorname{cone}(r^{i}, r^{i+1})), \\ & S_{i}^{x} \alpha_{i} + S_{i+1}^{x} \alpha_{i+1} \geq 1 \\ & \forall i : r^{i} \in \operatorname{cone}(r^{i-1}, r^{i+1}), \\ & \alpha_{i} \leq \lambda_{i-1}^{i} \alpha_{i-1} + \lambda_{i+1}^{i} \alpha_{i+1} \\ \rbrace, \\ \end{split}$$
with $S \subset \mathbb{Z}^{2}.$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

 $S := \overline{S_0}$ do { $\alpha := \operatorname{argmin} c^T \alpha$ s.t. $\alpha \in \overline{Q}(S)$ if $\alpha \in \overline{Q}$ OK, valid cut, exit. else Find a constraint of \overline{Q} violated by α . Add constraints to S.

 $S := S_0$ do { $\alpha := \operatorname{argmin} c^T \alpha$ s.t. $\alpha \in \overline{Q}(S)$ 0 0 r^{2} r^3 if L_{α} is lattice-free 0 OK, valid cut, exit. else f L_{α} Find $x \in \mathbb{Z}^2 \cap \operatorname{interior}(L_\alpha)$. 0 0 x_2 Add x to S. x_1

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注目 のへ(?)

 $S := \overline{S_0}$ do { $\alpha := \operatorname{argmin} c^T \alpha$ s.t. $\alpha \in \overline{Q}(S)$ r^2 r^3 r^1 if L_{α} is lattice-free L_{α} OK, valid cut, exit. else fFind $x \in \mathbb{Z}^2 \cap \operatorname{interior}(L_\alpha)$. 0 x_2 Add x to S. x_1

(日)、

э

 $S := S_0$ do { $\alpha := \operatorname{argmin} c^T \alpha$ s.t. $\alpha \in \overline{Q}(S)$ 0 r^3 rif L_{α} is lattice-free OK, valid cut, exit. else f L_{α} Find $x \in \mathbb{Z}^2 \cap \operatorname{interior}(L_\alpha)$. 0 x_2 Add x to S. x_1

 $S := S_0$ do { $\alpha := \operatorname{argmin} c^T \alpha$ s.t. $\alpha \in \overline{Q}(S)$ 0 0 r^{2} r^3 r^1 if L_{α} is lattice-free OK, valid cut, exit. else L_{α} f Find $x \in \mathbb{Z}^2 \cap \operatorname{interior}(L_\alpha)$. 0 x_2 r^4 Add x to S. 0

 $S := S_0$ do { $\alpha := \operatorname{argmin} c^T \alpha$ s.t. $\alpha \in \overline{Q}(S)$ 0 r^2 r^3 r^1 if L_{α} is lattice-free OK, valid cut, exit. else f L_{α} Find $x \in \mathbb{Z}^2 \cap \operatorname{interior}(L_\alpha)$. 0 x_2 r^4 Add x to S. x

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

The oracle

Find an integer point in interior(L_{α}) or prove that L_{α} is lattice-free.

- possible in polynomial time for any fixed dimension d (Barvinok's algorithm)
- ▶ we are in dimension two
- we know of integer points on the boundary of L_α
- can we find a closed-form formula?

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Find an integer point in interior(L_{α}) or prove that L_{α} is lattice-free.

- possible in polynomial time for any fixed dimension d (Barvinok's algorithm)
- ▶ we are in dimension two
- we know of integer points on the boundary of L_α
- can we find a closed-form formula?

Find an integer point in interior(L_{α}) or prove that L_{α} is lattice-free.

- possible in polynomial time for any fixed dimension d (Barvinok's algorithm)
- we are in dimension two
- we know of integer points on the boundary of L_α
- can we find a closed-form formula?

イロト 不得 トイヨト イヨト

ъ

Find an integer point in interior(L_{α}) or prove that L_{α} is lattice-free.

- possible in polynomial time for any fixed dimension d (Barvinok's algorithm)
- we are in dimension two
- we know of integer points on the boundary of L_α
- can we find a closed-form formula?

Find an integer point in interior(L_{α}) or prove that L_{α} is lattice-free.

- possible in polynomial time for any fixed dimension d (Barvinok's algorithm)
- we are in dimension two
- we know of integer points on the boundary of L_α
- can we find a closed-form formula?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Find an integer point in interior(L_{α}) or prove that L_{α} is lattice-free.

- possible in polynomial time for any fixed dimension d (Barvinok's algorithm)
- we are in dimension two
- we know of integer points on the boundary of L_α
- can we find a closed-form formula?

イロト 不得 トイヨト イヨト

-

Find an integer point in interior(L_{α}) or prove that L_{α} is lattice-free.

0

0

1. Consider the convex hull conv(T) of the known tight integer points: $T := S \cap \text{boundary}(L_{\alpha}).$

we triangularize conv(T)

 we want to find integer points on integer segments and integer triangles

 possible with modulo arithmetic

Find an integer point in interior(L_{α}) or prove that L_{α} is lattice-free.

0

1. Consider the convex hull conv(T) of the known tight integer points: $T := S \cap \text{boundary}(L_{\alpha}).$

▶ we triangularize conv(T)

 we want to find integer points on integer segments and integer triangles

 possible with modulo arithmetic

Find an integer point in interior(L_{α}) or prove that L_{α} is lattice-free.

1. Consider the convex hull conv(T) of the known tight integer points: $T := S \cap \text{boundary}(L_{\alpha}).$

- ▶ we triangularize conv(T)
- we want to find integer points on integer segments and integer triangles
- possible with modulo arithmetic

Find an integer point in interior(L_{α}) or prove that L_{α} is lattice-free.

1. Consider the convex hull conv(T) of the known tight integer points: $T := S \cap \text{boundary}(L_{\alpha}).$

- ▶ we triangularize conv(T)
- we want to find integer points on integer segments and integer triangles
- possible with modulo arithmetic

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

The oracle: conv(T), continued

Find an integer point in conv(T) or prove that conv(T) is lattice-free. Theorem

Let T be a triangle with vertices (0, u, v) that has interior lattice points and such that $gcd(u_1, u_2) = gcd(v_1, v_2) = 1$. T has an interior lattice point w such that $w = \frac{\lambda}{\det(|u|v|)}u + \frac{1}{\det(|u|v|)}v$ with $\lambda \in \mathbb{Z}_+$.

We therefore build w by solving the diophantine system

$$\begin{cases} \lambda u_1 + v_1 = k_1 \det([u|v]) \\ \lambda u_2 + v_2 = k_2 \det([u|v]) \end{cases}, \ \lambda, k_1, k_2 \in \mathbb{Z}$$

The oracle: conv(T), continued

Find an integer point in conv(T) or prove that conv(T) is lattice-free.

Theorem

Let T be a triangle with vertices (0, u, v) that has interior lattice points and such that $gcd(u_1, u_2) = gcd(v_1, v_2) = 1$. T has an interior lattice point w such that $w = \frac{\lambda}{\det([u|v])}u + \frac{1}{\det([u|v])}v$ with $\lambda \in \mathbb{Z}_+$.

We therefore build w by solving the diophantine system

$$\begin{cases} \lambda u_1 + v_1 = k_1 \det([u|v]) \\ \lambda u_2 + v_2 = k_2 \det([u|v]) \end{cases}, \ \lambda, k_1, k_2 \in \mathbb{Z}$$

The oracle: conv(T), continued

Find an integer point in conv(T) or prove that conv(T) is lattice-free.

Theorem

Let T be a triangle with vertices (0, u, v) that has interior lattice points and such that $gcd(u_1, u_2) = gcd(v_1, v_2) = 1$. T has an interior lattice point w such that $w = \frac{\lambda}{\det([u|v])}u + \frac{1}{\det([u|v])}v$ with $\lambda \in \mathbb{Z}_+$.

We therefore build w by solving the diophantine system

$$\begin{cases} \lambda u_1 + v_1 = k_1 \det([u|v]) \\ \lambda u_2 + v_2 = k_2 \det([u|v]) \end{cases}, \ \lambda, k_1, k_2 \in \mathbb{Z}$$

Find an integer point in interior(L_{α}) or prove that L_{α} is lattice-free.

2. Assume conv(T) lattice-free.

Let us define:

$$e^{jk} := T^k - T^j$$

$$u^{jk} := \frac{e^{jk}}{\gcd(e_1^{jk}, e_2^{jk})}$$

$$U^{ijk} := T^i + u^{jk}$$

Theorem

Find an integer point in interior(L_{α}) or prove that L_{α} is lattice-free.

2. Assume conv(T) lattice-free. Let us define:

$$e^{jk} := T^k - T^j$$

$$\mu^{jk} := \frac{e^{jk}}{\gcd(e_1^{jk}, e_2^{jk})}$$

$$U^{ijk} := T^i + \mu^{jk}$$

Theorem

Find an integer point in interior(L_{α}) or prove that L_{α} is lattice-free.

Assume conv(T) lattice-free.
 Let us define:

$$e^{jk} := T^k - T^j$$

$$u^{jk} := \frac{e^{jk}}{\gcd(e_1^{jk}, e_2^{jk})}$$

$$U^{ijk} := T^j + u^{jk}$$

Theorem

Find an integer point in interior(L_{α}) or prove that L_{α} is lattice-free.

Assume conv(T) lattice-free.
 Let us define:

$$e^{jk} := T^k - T^j$$

$$u^{jk} := \frac{e^{jk}}{\gcd(e_1^{jk}, e_2^{jk})}$$

$$U^{ijk} := T^i + u^{jk}$$

Theorem

Find an integer point in interior(L_{α}) or prove that L_{α} is lattice-free.

Assume conv(T) lattice-free.
 Let us define:

$$e^{jk} := T^k - T^j$$

$$u^{jk} := \frac{e^{jk}}{\gcd(e_1^{jk}, e_2^{jk})}$$

$$U^{ijk} := T^i + u^{jk}$$

Theorem

Find an integer point in interior(L_{α}) or prove that L_{α} is lattice-free.

Assume conv(T) lattice-free.
 Let us define:

$$e^{jk} := T^k - T^j$$

$$u^{jk} := \frac{e^{jk}}{\gcd(e_1^{jk}, e_2^{jk})}$$

$$U^{ijk} := T^i + u^{jk}$$

Theorem

Find an integer point in interior(L_{α}) or prove that L_{α} is lattice-free.

Assume conv(T) lattice-free.
 Let us define:

$$e^{jk} := T^k - T^j$$

$$u^{jk} := \frac{e^{jk}}{\gcd(e_1^{jk}, e_2^{jk})}$$

$$U^{ijk} := T^i + u^{jk}$$

Theorem

Find an integer point in interior(L_{α}) or prove that L_{α} is lattice-free.

Assume conv(T) lattice-free.
 Let us define:

$$e^{jk} := T^k - T^j$$

$$u^{jk} := \frac{e^{jk}}{\gcd(e_1^{jk}, e_2^{jk})}$$

$$U^{ijk} := T^i + u^{jk}$$

Theorem

Results

Preliminary Computational results

	Average	Average	Average	Max.
	time	CGLP time	iter.	iter.
	per cut (ms)	per cut (%time)	per cut	per cut
MIPLIB 3	18ms	99.84%	1.12	39
MIPLIB 2003	34ms	99.95%	1.17	30

<□ > < @ > < E > < E > E のQ @

Preliminary Computational results

	Average	Average	Average	Max.
	time	CGLP time	iter.	iter.
	per cut (ms)	per cut (%time)	per cut	per cut
MIPLIB 3	18ms	99.84%	1.12	39
MIPLIB 2003	34ms	99.95%	1.17	30

	two-row		CPLEX		
	Average	Average	Average	Average	Average
	# cuts	# tight cuts	%gc	# cuts	%gc
MIPLIB 3	2560.6	89.5	35.15%	80.3	51.85
MIPLIB 2003	2900.3	127.3	24.74%	161.4	40.86

(ロ)、(型)、(E)、(E)、 E) の(の)

We have

- a fast separation for two-row cuts
- a closed-form procedure for guaranteeing validity
- means for driving towards deep cuts (with $c^T \alpha$)

・ロット (雪) (日) (日) (日)

- ▶ a better definition of a "deep" cut
- good heuristics for the choice of the rows
- a way do choose a good initial basis

We have

a fast separation for two-row cuts

- a closed-form procedure for guaranteeing validity
- means for driving towards deep cuts (with $c^T \alpha$)

- ▶ a better definition of a "deep" cut
- good heuristics for the choice of the rows
- a way do choose a good initial basis

We have

- a fast separation for two-row cuts
- a closed-form procedure for guaranteeing validity
- means for driving towards deep cuts (with $c^T \alpha$)

- ▶ a better definition of a "deep" cut
- good heuristics for the choice of the rows
- a way do choose a good initial basis

We have

- a fast separation for two-row cuts
- a closed-form procedure for guaranteeing validity
- means for driving towards deep cuts (with $c^T \alpha$)

- a better definition of a "deep" cut
- good heuristics for the choice of the rows
- a way do choose a good initial basis

We have

- a fast separation for two-row cuts
- a closed-form procedure for guaranteeing validity
- means for driving towards deep cuts (with $c^T \alpha$)

- ▶ a better definition of a "deep" cut
- good heuristics for the choice of the rows
- a way do choose a good initial basis

We have

- ► a fast separation for two-row cuts
- a closed-form procedure for guaranteeing validity
- means for driving towards deep cuts (with $c^T \alpha$)

- ► a better definition of a "deep" cut
- good heuristics for the choice of the rows
- a way do choose a good initial basis

We have

- a fast separation for two-row cuts
- a closed-form procedure for guaranteeing validity
- means for driving towards deep cuts (with $c^T \alpha$)

- ▶ a better definition of a "deep" cut
- good heuristics for the choice of the rows
- ► a way do choose a good initial basis

We have

- a fast separation for two-row cuts
- a closed-form procedure for guaranteeing validity
- means for driving towards deep cuts (with $c^T \alpha$)

- ▶ a better definition of a "deep" cut
- good heuristics for the choice of the rows
- a way do choose a good initial basis

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

//////

Future directions

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Future directions

- objective function
- basis choice: what is a good basis?
- basis choice: impact of a pivot on Q

- choice of the rows
- separation of $x \neq x_{LP}^*$
- cut handling
- (algorithm complexity)
- strengthening (lifting)
- more than two rows