A separation method for two-row cuts

Laurent Poirrier
Joint work with Quentin Louveaux

Montefiore Institute, ULg

Thursday, April 7th, 2011

Background

The mixed integer linear problem

$\min c^{T} x$
(MIP) s.t. $A x \geq b$
$$
x_{j} \in \mathbb{Z}, \text { for } j \in J
$$

The linear relaxation

$$
\begin{array}{ll}
& \min \\
\text { (LP) } & c^{\top} x \\
& \text { s.t. } \\
& A x \geq b \\
& x_{j} \in \mathbb{Z}, \text { for } j \in \mathcal{J}
\end{array}
$$

Cuts

Single-row cuts

From one (re)formulation of the problem

$$
\begin{array}{ll}
& \min \\
(\mathrm{c} \\
\text { (MIP) } x \\
\text { s.t. } & \bar{A} x \geq \bar{b} \\
& \\
& x_{J} \in \mathbb{Z}
\end{array}
$$

we extract one constraint $\bar{A}_{i} x \geq \bar{b}_{i}$.

- Knowing that $x_{j} \in \mathbb{Z}$, we construct a stronger inequality.
- In some cases, the cut can separate a given MIP-infeasible

Single-row cuts

From one (re)formulation of the problem

$$
\begin{array}{ll}
& \min \\
(\mathrm{c} \\
\text { (MIP) } x \\
\text { s.t. } & \bar{A} x \geq \bar{b} \\
& \\
& x_{J} \in \mathbb{Z}
\end{array}
$$

we extract one constraint $\bar{A}_{i} x \geq \bar{b}_{i}$.

- Knowing that $x_{j} \in \mathbb{Z}$, we construct a stronger inequality.
\square

Single-row cuts

From one (re)formulation of the problem

$$
\begin{array}{ll}
& \min \\
(\mathrm{c} \\
\text { (MIP) } x \\
\text { s.t. } & \bar{A} x \geq \bar{b} \\
& \\
& x_{J} \in \mathbb{Z}
\end{array}
$$

we extract one constraint $\bar{A}_{i} x \geq \bar{b}_{i}$.

- Knowing that $x_{j} \in \mathbb{Z}$, we construct a stronger inequality.
- In some cases, the cut can separate a given MIP-infeasible point x^{*}.

Two-row cuts

From one (re)formulation of the problem

$$
\begin{aligned}
& \min \bar{c}^{\top} x \\
& \text { (MIP) s.t. } \quad \begin{aligned}
\bar{A} x & =\bar{b} \\
x & \geq 0
\end{aligned} \\
& x_{J} \in \mathbb{Z}
\end{aligned}
$$

we extract two constraints

As a vector equation,

Two-row cuts

From one (re)formulation of the problem

$$
\begin{aligned}
& \min & \bar{c}^{T} x & \\
(\mathrm{MIP}) & \text { s.t. } & \bar{A} x & =\bar{b} \\
& & & \geq 0 \\
& & x_{J} & \in \mathbb{Z}
\end{aligned}
$$

we extract two constraints

$$
\begin{aligned}
x_{1}+\sum_{j} \bar{a}_{1 j} s_{j} & =f_{1}, & & x_{1}, x_{2} \in \mathbb{Z} \\
+x_{2}+\sum_{j} \bar{a}_{2 j} s_{j} & =f_{2}, & & s_{j} \in \mathbb{R}_{+}
\end{aligned}
$$

As a vector equation,

Two-row cuts

From one (re)formulation of the problem

$$
\begin{array}{rlrl}
& \min & \bar{c}^{T} x & \\
\text { (MIP) } \begin{aligned}
\text { s.t. } & \bar{A} x
\end{aligned}=\bar{b} \\
& & x & \geq 0 \\
& & & \in \mathbb{Z}
\end{array}
$$

we extract two constraints

$$
\begin{array}{rlrl}
x_{1}+\sum_{j} \bar{a}_{1 j} s_{j} & =f_{1} \\
+x_{2}+\sum_{j} \bar{a}_{2 j} s_{j} & =f_{2}, & & x_{1}, x_{2} \in \mathbb{Z} \\
s_{j} \in \mathbb{R}_{+}
\end{array}
$$

As a vector equation,

$$
\left(P_{l}\right) \quad x=f+\sum_{j} r^{j} s_{j}, \quad \begin{aligned}
& x \in \mathbb{Z}^{2} \\
& s \in \mathbb{R}_{+}^{n}
\end{aligned}
$$

Two-row cuts

From one (re)formulation of the problem

(MIP) | | \min | $\bar{c}^{T} x$ | |
| ---: | :--- | ---: | :--- |
| s.t. | $\bar{A} x$ | $=\bar{b}$ | |
| | | | ≥ 0 |
| | | | $\in \mathbb{Z}$ |

we extract two constraints

$$
\begin{array}{rlrl}
x_{1}+\sum_{j} \bar{a}_{1 j} s_{j} & =f_{1} \\
+x_{2}+\sum_{j} \bar{a}_{2 j} s_{j} & =f_{2}, & & x_{1}, x_{2} \in \mathbb{Z} \\
s_{j} \in \mathbb{R}_{+}
\end{array}
$$

As a vector equation,

$$
\left(P_{l}\right) \quad x=f+\sum_{j} r^{j} s_{j}, \quad \begin{array}{ll}
x \in \mathbb{Z}^{2} \\
s \in \mathbb{R}_{+}^{n}
\end{array}
$$

In case (MIP) describes the optimal simplex tableau, $\left(x_{L P}^{*}, s_{L P}^{*}\right)=(f, 0)$.

The two-row model

$$
\text { (MIP) }\left\{\begin{array} { r }
{ \overline { A } x = \overline { b } } \\
{ x \geq 0 } \\
{ x _ { J } \in \mathbb { Z } }
\end{array} \quad (P _ { l }) \left\{\begin{array}{l}
x=f+\sum_{j} r^{j} s_{j} \\
x \in \mathbb{Z}^{2} \\
s \in \mathbb{R}_{+}^{n}
\end{array}\right.\right.
$$

From (MIP) to $\left(P_{l}\right)$ we dropped:

The two-row model

$$
\text { (MIP) }\left\{\begin{array} { r }
{ \overline { A } x = \overline { b } } \\
{ x \geq 0 } \\
{ x J \in \mathbb { Z } }
\end{array} \quad (P _ { l }) \left\{\begin{array}{l}
x=f+\sum_{j} r^{j} s_{j} \\
x \in \mathbb{Z}^{2} \\
s \in \mathbb{R}_{+}^{n}
\end{array}\right.\right.
$$

From (MIP) to (P_{l}) we dropped:

- all equality constraints except two
- the nonegativity constraints on these two variables

The two-row model

$$
\text { (MIP) }\left\{\begin{array} { r }
{ \overline { A } x = \overline { b } } \\
{ x \geq 0 } \\
{ x _ { J } \in \mathbb { Z } }
\end{array} \quad (P _ { l }) \left\{\begin{array}{l}
x=f+\sum_{j} r^{j} s_{j} \\
x \in \mathbb{Z}^{2} \\
s \in \mathbb{R}_{+}^{n}
\end{array}\right.\right.
$$

From (MIP) to (P_{l}) we dropped:

- all equality constraints except two
- the integrality constraints on all variables except two
- the nonegativity constraints on these two variables

Therefore,

* (P) is a relaxation of (MIP), i.e. (MIP) $\subseteq\left(P_{l}\right)$

The two-row model

$$
\text { (MIP) }\left\{\begin{array} { r }
{ \overline { A } x = \overline { b } } \\
{ x \geq 0 } \\
{ x J \in \mathbb { Z } }
\end{array} \quad (P _ { l }) \left\{\begin{array}{l}
x=f+\sum_{j} r^{j} s_{j} \\
x \in \mathbb{Z}^{2} \\
s \in \mathbb{R}_{+}^{n}
\end{array}\right.\right.
$$

From (MIP) to (P_{l}) we dropped:

- all equality constraints except two
- the integrality constraints on all variables except two
- the nonegativity constraints on these two variables
- $\left(P_{l}\right)$ is a relaxation of (MIP), i.e. (MIP) $\subseteq\left(P_{l}\right)$
- Any valid inequality for P_{l} is valid for MIP.

The two-row model

$$
\text { (MIP) }\left\{\begin{array} { r l }
{ \overline { A } x } & { = \overline { b } } \\
{ x } & { \geq 0 } \\
{ x _ { J } \in \mathbb { Z } }
\end{array} \quad (P _ { l }) \left\{\begin{array}{l}
x=f+\sum_{j} r^{j} s_{j} \\
x \in \mathbb{Z}^{2} \\
s \in \mathbb{R}_{+}^{n}
\end{array}\right.\right.
$$

From (MIP) to (P_{l}) we dropped:

- all equality constraints except two
- the integrality constraints on all variables except two
- the nonegativity constraints on these two variables

Therefore,

- $\left(P_{l}\right)$ is a relaxation of (MIP), i.e. (MIP) $\subseteq\left(P_{l}\right)$.

The two-row model

$$
\text { (MIP) }\left\{\begin{array} { r l }
{ \overline { A } x } & { = \overline { b } } \\
{ x } & { \geq 0 } \\
{ x _ { J } \in \mathbb { Z } }
\end{array} \quad (P _ { l }) \left\{\begin{array}{l}
x=f+\sum_{j} r^{j} s_{j} \\
x \in \mathbb{Z}^{2} \\
s \in \mathbb{R}_{+}^{n}
\end{array}\right.\right.
$$

From (MIP) to (P_{l}) we dropped:

- all equality constraints except two
- the integrality constraints on all variables except two
- the nonegativity constraints on these two variables

Therefore,

- $\left(P_{l}\right)$ is a relaxation of (MIP), i.e. (MIP) $\subseteq\left(P_{l}\right)$.
- Any valid inequality for P_{l} is valid for MIP.

Problem statement

The two-row model

$$
\begin{aligned}
& x=f+\sum_{j} r^{j} s_{j} \\
& x \in \mathbb{Z}^{2} \\
& s_{j} \geq 0
\end{aligned}
$$

We want to separate

$$
\left(x_{1}, x_{2}, s_{1}, \ldots\right)=\left(f_{1}, f_{2}, 0, \ldots\right)
$$

The two-row model

$$
\begin{aligned}
& x=f+\sum_{j} r^{j} s_{j} \\
& x \in \mathbb{Z}^{2} \\
& s_{j} \geq 0
\end{aligned}
$$

We want to separate

$$
\left(x_{1}, x_{2}, s_{1}, \ldots\right)=\left(f_{1}, f_{2}, 0, \ldots\right)
$$

The two-row model

$$
\begin{aligned}
& x=f+\sum_{j} r^{j} s_{j} \\
& x \in \mathbb{Z}^{2} \\
& s_{j} \geq 0
\end{aligned}
$$

We want to separate

$$
\left(x_{1}, x_{2}, s_{1}, \ldots\right)=\left(f_{1}, f_{2}, 0, \ldots\right)
$$

Consider

$$
\alpha_{1} s_{1}+\ldots+\alpha_{n} s_{n} \geq 1
$$

with $v^{i}=f+\frac{1}{\alpha_{i}} r^{i}, \alpha_{i} \geq 0$.

The two-row separation problem

We have a model $P_{l}:=$

$$
\left\{\begin{aligned}
\{(x, s): & x \\
x & =f+\sum_{j} r^{j} s_{j} \\
x & \in \mathbb{Z}^{2} \\
s_{j} & \geq 0
\end{aligned}\right.
$$

and the general form of a cut

$$
\alpha_{1} s_{1}+\ldots+\alpha_{n} s_{n} \geq 1
$$

The two-row separation problem

We have a model $P_{l}:=$

$$
\begin{aligned}
\{(x, s): & x \\
x & =f+\sum_{j} r^{j} s_{j} \\
& x \in \mathbb{Z}^{2} \\
s_{j} & \geq 0
\end{aligned}
$$

and the general form of a cut

$$
\alpha_{1} s_{1}+\ldots+\alpha_{n} s_{n} \geq 1
$$

- How to compute a valid α ?

The two-row separation problem

We have a model $P_{l}:=$

$$
\begin{aligned}
\{(x, s): & x \\
x & =f+\sum_{j} r^{j} s_{j} \\
& x \in \mathbb{Z}^{2} \\
s_{j} & \geq 0
\end{aligned}
$$

and the general form of a cut

$$
\alpha_{1} s_{1}+\ldots+\alpha_{n} s_{n} \geq 1
$$

- How to compute a valid α ?

- How to choose among valid as?

Lattice-free sets - the LP intuition

Given $\bar{x} \in \mathbb{Z}^{2}$, we want, for all $s \in \mathbb{R}_{+}^{n}$ such that $\bar{x}=f+R s$, that

$$
\alpha_{1} s_{1}+\ldots+\alpha_{n} s_{n} \geq 1
$$

therefore, for all $i, j, s_{i}^{\bar{x}}, s_{j}^{\bar{x}}$ such that $\bar{x}=f+s_{i}^{\bar{x}} r^{i}+s_{j}^{\bar{x}} r^{j}$, we must have

Lattice-free sets - the LP intuition

Given $\bar{x} \in \mathbb{Z}^{2}$, we want, for all $s \in \mathbb{R}_{+}^{n}$ such that $\bar{x}=f+R s$, that

$$
\alpha_{1} s_{1}+\ldots+\alpha_{n} s_{n} \geq 1
$$

i.e. we want

$$
\begin{aligned}
\min & \alpha_{1} s_{1}+\ldots+\alpha_{n} s_{n} \geq 1 \\
\text { s.t. } & R s=\bar{x}-f \\
& s \geq 0
\end{aligned}
$$

Lattice-free sets - the LP intuition

Given $\bar{x} \in \mathbb{Z}^{2}$, we want, for all $s \in \mathbb{R}_{+}^{n}$ such that $\bar{x}=f+R s$, that

$$
\alpha_{1} s_{1}+\ldots+\alpha_{n} s_{n} \geq 1
$$

i.e. we want

$$
\begin{aligned}
\min & \alpha_{1} s_{1}+\ldots+\alpha_{n} s_{n} \geq 1 \\
\text { s.t. } & R s=\bar{x}-f \\
& s \geq 0
\end{aligned}
$$

therefore, for all $i, j, s_{i}^{\bar{x}}, s_{j}^{\bar{x}}$ such that $\bar{x}=f+s_{i}^{\bar{x}} r^{i}+s_{j}^{\bar{x}} r^{j}$, we must have

$$
s_{i}^{\bar{x}} \alpha_{i}+s_{j}^{\bar{x}} \alpha_{j} \geq 1
$$

Lattice-free sets - the geometrical intuition

Given $\bar{x} \in \mathbb{Z}^{2}$,
for all $i, j: \bar{x} \in f+\operatorname{cone}\left(r^{i}, r^{j}\right)$,

$$
s_{i}^{\overline{\boxed{ }}} \alpha_{i}+s_{j}^{\overline{\widehat{ }}} \alpha_{j} \geq 1,
$$

with $s_{i}^{\overline{\overline{ }}}, s_{j}^{\bar{x}}: \bar{x}=f+s_{i}^{\bar{\top}} r^{i}+s_{j}^{\overline{\bar{x}}} r^{j}$.

Lattice-free sets - the geometrical intuition

Given $\bar{x} \in \mathbb{Z}^{2}$,
for all $i, j: \bar{x} \in f+\operatorname{cone}\left(r^{i}, r^{j}\right)$,

$$
s_{i}^{\overline{\boxed{ }}} \alpha_{i}+s_{j}^{\overline{\widehat{ }}} \alpha_{j} \geq 1,
$$

with $s_{i}^{\overline{\bar{x}}}, s_{j}^{\bar{x}}: \bar{x}=f+s_{i}^{\bar{\vee}} r^{i}+s_{j}^{\overline{\bar{x}}} r^{j}$.

Lattice-free sets - the geometrical intuition

Given $\bar{x} \in \mathbb{Z}^{2}$,
for all $i, j: \bar{x} \in f+\operatorname{cone}\left(r^{i}, r^{j}\right)$,

$$
s_{i}^{\overline{\boxed{ }}} \alpha_{i}+s_{j}^{\overline{\widehat{ }}} \alpha_{j} \geq 1,
$$

with $s_{i}^{\bar{\top}}, s_{j}^{\bar{x}}: \bar{x}=f+s_{i}^{\bar{\top}} r^{i}+s_{j}^{\overline{\widetilde{ }}} r^{j}$.

Lattice-free sets - the geometrical intuition

Given $\bar{x} \in \mathbb{Z}^{2}$,
for all $i, j: \bar{x} \in f+\operatorname{cone}\left(r^{i}, r^{j}\right)$,

$$
s_{i}^{\overline{\overline{ }}} \alpha_{i}+s_{j}^{\overline{\bar{x}}} \alpha_{j} \geq 1,
$$

with $s_{i}^{\bar{\top}}, s_{j}^{\bar{x}}: \bar{x}=f+s_{i}^{\bar{\top}} r^{i}+s_{j}^{\overline{\widetilde{ }}} r^{j}$.

Lattice-free sets - the intuition, for all x

For all $x \in \mathbb{Z}^{2}$,
for all $i, j: x \in f+\operatorname{cone}\left(r^{i}, r^{j}\right)$,

$$
s_{i}^{\times} \alpha_{i}+s_{j}^{\times} \alpha_{j} \geq 1,
$$

with $s_{i}^{x}, s_{j}^{x}: x=f+s_{i}^{\times} r^{i}+s_{j}^{x} r^{j}$.

Lattice-free sets - the intuition, for every cone

For all i, j, for all $x \in \mathbb{Z}^{2} \cap\left(f+\operatorname{cone}\left(r^{i}, r^{j}\right)\right)$,

$$
s_{i}^{\times} \alpha_{i}+s_{j}^{\times} \alpha_{j} \geq 1,
$$

with $s_{i}^{x}, s_{j}^{x}: x=f+s_{i}^{X} r^{i}+s_{j}^{x} r^{j}$.

Lattice-free sets - the set $\mathcal{X}_{i j}$

For all i, j,
for all $x \in \mathcal{X}_{i j}$,

$$
s_{i}^{\times} \alpha_{i}+s_{j}^{\times} \alpha_{j} \geq 1,
$$

with $s_{i}^{x}, s_{j}^{x}: x=f+s_{i}^{\times} r^{i}+s_{j}^{x} r^{j}$.

- we can restrict $x \in \mathbb{Z}^{2}$ to $x \in \mathcal{X}_{i j}$ where $\mathcal{X}_{i j}$ is the set of the vertices of $\mathbb{Z}^{2} \cap\left(f+\operatorname{conv}\left(r^{i}, r^{j}\right)\right)$.

Polarity

Let $P \subseteq \mathbb{R}^{N}$ be a polyhedron and $Q \subseteq \mathbb{R}^{N}$ its polar.
There is a correspondance between
Extreme point $\bar{x} \in P$ and Facet of $Q: \bar{x}^{T} a \geq 1$
Extreme ray $\bar{x} \in P \quad$ and Facet of $Q: \bar{x}^{\top} a \geq 0$
Facet of $P: \bar{a}^{T} x \geq 1$ and Extreme point $\bar{a} \in Q$
Facet of $P: \bar{a}^{T} x \geq 0$ and Extreme ray $\bar{a} \in Q$

Polarity, applied

- We have a polyhedron

$$
\operatorname{conv}\left(P_{l}\right)=\operatorname{conv}\left(\left\{(x, s) \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{n} \mid x=f+\sum_{j} r^{j} s_{j}\right\}\right)
$$

Extreme point $\bar{x} \in \operatorname{conv}\left(P_{I}\right)$	Facet of $Q: \bar{x}^{\top} \alpha \geq 1$
Extreme ray $\bar{x} \in \operatorname{conv}\left(P_{I}\right)$	Facet of $Q: \bar{x}^{T} \alpha \geq 0$

Facet of $\operatorname{conv}\left(P_{l}\right): \bar{\alpha}^{T} x \geq 1$
Facet of $\operatorname{conv}\left(P_{l}\right): \bar{\alpha}^{T} x \geq 0$
Extreme point $\bar{\alpha} \in Q$
Extreme ray $\bar{\alpha} \in Q$

Polarity, applied

- We have a polyhedron

$$
\operatorname{conv}\left(P_{l}\right)=\operatorname{conv}\left(\left\{(x, s) \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{n} \mid x=f+\sum_{j} r^{j} s_{j}\right\}\right)
$$

- $\operatorname{conv}\left(P_{l}\right) \subseteq \mathbb{R}^{2+n}$ is of dimensionality n.
- We know the extreme points and rays of $\operatorname{conv}\left(P_{l}\right)$.

Extreme point $\bar{x} \in \operatorname{conv}\left(P_{l}\right)$	Facet of $Q: \bar{x}^{\top} \alpha \geq 1$
Extreme ray $\bar{x} \in \operatorname{conv}\left(P_{l}\right)$	Facet of $Q: \bar{x}^{\top} \alpha \geq 0$

Facet of $\operatorname{conv}\left(P_{l}\right): \bar{\alpha}^{T} x \geq 1$
Facet of $\operatorname{conv}\left(P_{l}\right): \bar{\alpha}^{T} x \geq 0$
Extreme point $\bar{\alpha} \in Q$
Extreme ray $\bar{\alpha} \in Q$

Polarity, applied

- We have a polyhedron

$$
\operatorname{conv}\left(P_{l}\right)=\operatorname{conv}\left(\left\{(x, s) \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{n} \mid x=f+\sum_{j} r^{j} s_{j}\right\}\right)
$$

- $\operatorname{conv}\left(P_{l}\right) \subseteq \mathbb{R}^{2+n}$ is of dimensionality n.
- We know the extreme points and rays of $\operatorname{conv}\left(P_{l}\right)$.
- We can build the polar $Q \subseteq \mathbb{R}^{n}$ of $\operatorname{conv}\left(P_{l}\right)$.

Extreme point $\bar{x} \in \operatorname{conv}\left(P_{l}\right)$	\longrightarrow	Facet of $Q: \bar{x}^{\top} \alpha \geq 1$
Extreme ray $\bar{x} \in \operatorname{conv}\left(P_{l}\right)$	\longrightarrow	Facet of $Q: \bar{x}^{T} \alpha \geq 0$

Facet of $\operatorname{conv}\left(P_{l}\right): \bar{\alpha}^{T} x \geq 1$
Facet of $\operatorname{conv}\left(P_{l}\right): \bar{\alpha}^{T} x \geq 0$
Extreme point $\bar{\alpha} \in Q$
Extreme ray $\bar{\alpha} \in Q$

Polarity, applied

- We have a polyhedron

$$
\operatorname{conv}\left(P_{l}\right)=\operatorname{conv}\left(\left\{(x, s) \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{n} \mid x=f+\sum_{j} r^{j} s_{j}\right\}\right)
$$

- $\operatorname{conv}\left(P_{l}\right) \subseteq \mathbb{R}^{2+n}$ is of dimensionality n.
- We know the extreme points and rays of $\operatorname{conv}\left(P_{l}\right)$.
- We can build the polar $Q \subseteq \mathbb{R}^{n}$ of $\operatorname{conv}\left(P_{l}\right)$.
- We can optimize over Q

Extreme point $\bar{x} \in \operatorname{conv}\left(P_{l}\right)$	\longrightarrow	Facet of $Q: \bar{x}^{T} \alpha \geq 1$
Extreme ray $\bar{x} \in \operatorname{conv}\left(P_{l}\right)$	\longrightarrow	Facet of $Q: \bar{x}^{T} \alpha \geq 0$
	$\downarrow \downarrow$	
Facet of $\operatorname{conv}\left(P_{l}\right): \bar{\alpha}^{T} x \geq 1$		Extreme point $\bar{\alpha} \in Q$
Facet of $\operatorname{conv}\left(P_{l}\right): \bar{\alpha}^{T} x \geq 0$		Extreme ray $\bar{\alpha} \in Q$

Polarity, applied

- We have a polyhedron

$$
\operatorname{conv}\left(P_{l}\right)=\operatorname{conv}\left(\left\{(x, s) \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{n} \mid x=f+\sum_{j} r^{j} s_{j}\right\}\right)
$$

- $\operatorname{conv}\left(P_{l}\right) \subseteq \mathbb{R}^{2+n}$ is of dimensionality n.
- We know the extreme points and rays of $\operatorname{conv}\left(P_{l}\right)$.
- We can build the polar $Q \subseteq \mathbb{R}^{n}$ of $\operatorname{conv}\left(P_{l}\right)$.
- We can optimize over Q to find facets $\operatorname{conv}\left(P_{l}\right)$.

Extreme point $\bar{x} \in \operatorname{conv}\left(P_{l}\right)$	\longrightarrow	Facet of $Q: \bar{x}^{\top} \alpha \geq 1$
Extreme ray $\bar{x} \in \operatorname{conv}\left(P_{l}\right)$	\longrightarrow	Facet of $Q: \bar{x}^{\top} \alpha \geq 0$
	$\downarrow \downarrow$	

Facet of $\operatorname{conv}\left(P_{l}\right): \bar{\alpha}^{T} x \geq 1 \quad \longleftarrow \quad$ Extreme point $\bar{\alpha} \in Q$
Facet of $\operatorname{conv}\left(P_{l}\right): \bar{\alpha}^{\top} x \geq 0 \longleftarrow \quad$ Extreme ray $\bar{\alpha} \in Q$

Finding facets of conv P_{l}

The polar of $\operatorname{conv}\left(P_{l}\right)$ is

$$
Q=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid \forall i, j, \forall x \in \mathcal{X}_{i j}, \quad s_{i}^{x} \alpha_{i}+s_{j}^{x} \alpha_{j} \geq 1\right\} .
$$

Finding facets of conv P_{l}

The polar of $\operatorname{conv}\left(P_{l}\right)$ is

$$
Q=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid \forall i, j, \forall x \in \mathcal{X}_{i j}, \quad s_{i}^{x} \alpha_{i}+s_{j}^{x} \alpha_{j} \geq 1\right\} .
$$

We find facets of $\operatorname{conv}\left(P_{l}\right)$ by choosing an objective function $c^{T} \alpha$ and optimizing over Q :

$$
\begin{array}{cl}
\min & c^{T} \alpha \\
\text { s.t. } & s_{i}^{x} \alpha_{i}+s_{j}^{x} \alpha_{j} \geq 1, \quad \forall i, j, \quad \forall x \in \mathcal{X}_{i j} \\
& \alpha \geq 0
\end{array}
$$

New developments

Complexity of writing the polar (1)

- For each cone, compute the integer hull.
- For each vertex of each integer hull comnute its
representation in the corresponding cone and write one inequality of the polar.

Complexity of writing the polar (1)

- For each cone, compute the integer hull.
\rightarrow For each vertex of each integer hull, compute its representation in the corresponding cone and write one inecrality of the nolar

The complexity is quadratic in the number of rays.

Complexity of writing the polar (1)

- For each cone, compute the integer hull.
- For each vertex of each integer hull, compute its representation in the corresponding cone and write one inequality of the polar.

The complexity is quadratic in the number of rays.
2. We have a polynomial (but possibly large) number of integer vertices in each cone.

Complexity of writing the polar (1)

- For each cone, compute the integer hull.
- For each vertex of each integer hull, compute its representation in the corresponding cone and write one inequality of the polar.

1. The complexity is quadratic in the number of rays. vertices in each cone.

Complexity of writing the polar (1)

- For each cone, compute the integer hull.
- For each vertex of each integer hull, compute its representation in the corresponding cone and write one inequality of the polar.

1. The complexity is quadratic in the number of rays.
2. We have a polynomial (but possibly large) number of integer vertices in each cone.

The complexity of the polar - the intuition
$P_{I}=\left\{(x, s) \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{n}:\right.$

$$
\left.x=f+\sum_{j=1}^{n} r^{j} s_{j}\right\}
$$

$$
Q=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid \forall i, j, \forall x \in \mathcal{X}_{i j}\right.
$$

$$
\left.s_{i}^{\times} \alpha_{i}+s_{j}^{\times} \alpha_{j} \geq 1\right\}
$$

$$
L_{\alpha}=\operatorname{conv}\left(\left\{f, v^{1}, \ldots, v^{n}\right\}\right)
$$

$$
\text { with } v^{i}=f+\frac{1}{\alpha_{i}} r^{i}
$$

The complexity of the polar - the intuition

$$
\begin{align*}
& P_{I}=\left\{(x, s) \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{n}:\right. \\
&\left.x=f+\sum_{j=1}^{n} r^{j} s_{j}\right\} \\
& Q=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid \forall i, j, \forall x \in \mathcal{X}_{i j},\right. \\
&\left.s_{i}^{x} \alpha_{i}+s_{j}^{x} \alpha_{j} \geq 1\right\} \\
& L_{\alpha}= \operatorname{conv}\left(\left\{f, v^{1}, \ldots, v^{n}\right\}\right) \\
& \text { with } v^{i}=f+\frac{1}{\alpha_{i}} r^{i} \tag{2}\\
& Q^{\prime}=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid \forall i, \forall x \in \mathcal{X}_{i, i+1},\right. \\
&\left.s_{i}^{x} \alpha_{i}+s_{i+1}^{x} \alpha_{i+1} \geq 1\right\}
\end{align*}
$$

The complexity of the polar - the intuition

$$
\begin{aligned}
& P_{I}=\left\{(x, s) \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{n}:\right. \\
&\left.x=f+\sum_{j=1}^{n} r^{j} s_{j}\right\} \\
& Q=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid \forall i, j, \forall x \in \mathcal{X}_{i j},\right. \\
&\left.s_{i}^{\times} \alpha_{i}+s_{j}^{x} \alpha_{j} \geq 1\right\} \\
& L_{\alpha}= \operatorname{conv}\left(\left\{f, v^{1}, \ldots, v^{n}\right\}\right) \\
& \text { with } v^{i}=f+\frac{1}{\alpha_{i}} r^{i} \\
& Q^{\prime}=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid \forall i, \forall x \in \mathcal{X}_{i, i+1},\right. \\
&\left.s_{i}^{\times} \alpha_{i}+s_{i+1}^{x} \alpha_{i+1} \geq 1\right\}
\end{aligned}
$$

The complexity of the polar - the intuition

$$
L_{\alpha}=\operatorname{conv}\left(\left\{f, v^{1}, \ldots, v^{n}\right\}\right)
$$

$$
\text { with } v^{i}=f+\frac{1}{\alpha_{i}} r^{i}
$$

$$
\bar{Q}=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid\right.
$$

$\forall i, \forall x \in \mathcal{X}_{i, i+1}$,

$$
s_{i}^{\times} \alpha_{i}+s_{i+1}^{\times} \alpha_{i+1} \geq 1
$$

$\forall i: r^{i} \in \operatorname{cone}\left(r^{i-1}, r^{i+1}\right)$,

$$
\left.\alpha_{i} \leq \lambda_{i-1}^{i} \alpha_{i-1}+\lambda_{i+1}^{i} \alpha_{i+1}\right\}
$$

Note: $r^{j}=\lambda_{i}^{j} r^{i}+\lambda_{k}^{j} r^{k}$

The complexity of the polar - the intuition

$$
L_{\alpha}=\operatorname{conv}\left(\left\{f, v^{1}, \ldots, v^{n}\right\}\right)
$$

$$
\text { with } v^{i}=f+\frac{1}{\alpha_{i}} r^{i}
$$

$$
\bar{Q}=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid\right.
$$

$\forall i, \forall x \in \mathcal{X}_{i, i+1}$,

$$
s_{i}^{\times} \alpha_{i}+s_{i+1}^{\times} \alpha_{i+1} \geq 1
$$

$\forall i: r^{i} \in \operatorname{cone}\left(r^{i-1}, r^{i+1}\right)$,

$$
\left.\alpha_{i} \leq \lambda_{i-1}^{i} \alpha_{i-1}+\lambda_{i+1}^{i} \alpha_{i+1}\right\}
$$

- What is $Q \backslash \bar{Q}$?

The complexity of the polar - the theory

$$
\begin{array}{rlrl}
Q=\{\alpha & \in \mathbb{R}_{+}^{n} \mid \forall i, j, \forall x \in \mathcal{X}_{i j}, & & \left.s_{i}^{x} \alpha_{i}+s_{j}^{\times} \alpha_{j} \geq 1\right\} \\
\bar{Q}=\{\alpha & \in \mathbb{R}_{+}^{n} \mid & \\
& \forall i, \forall x \in \mathcal{X}_{i, i+1}, & & s_{i}^{x} \alpha_{i}+s_{i+1}^{x} \alpha_{i+1} \geq 1 \\
& \forall i: r^{i} \in \operatorname{cone}\left(r^{i-1}, r^{i+1}\right), & \left.\alpha_{i} \leq \lambda_{i-1}^{i} \alpha_{i-1}+\lambda_{i+1}^{i} \alpha_{i+1}\right\} .
\end{array}
$$

$\bar{Q} \subseteq Q$, and all vertices of Q are in \bar{Q}

The complexity of the polar - the theory

$$
\begin{array}{rlrl}
Q=\{\alpha & \in \mathbb{R}_{+}^{n} \mid \forall i, j, \forall x \in \mathcal{X}_{i j}, & & \left.s_{i}^{x} \alpha_{i}+s_{j}^{\times} \alpha_{j} \geq 1\right\} \\
\bar{Q}=\{\alpha & \in \mathbb{R}_{+}^{n} \mid & \\
& \forall i, \forall x \in \mathcal{X}_{i, i+1}, & & s_{i}^{x} \alpha_{i}+s_{i+1}^{\times} \alpha_{i+1} \geq 1 \\
& \forall i: r^{i} \in \operatorname{cone}\left(r^{i-1}, r^{i+1}\right), & \left.\alpha_{i} \leq \lambda_{i-1}^{i} \alpha_{i-1}+\lambda_{i+1}^{i} \alpha_{i+1}\right\} .
\end{array}
$$

Theorem
$\bar{Q} \subseteq Q$, and all vertices of Q are in \bar{Q}.
\square

The complexity of the polar - the theory

$$
\begin{array}{rlrl}
Q=\{\alpha & \in \mathbb{R}_{+}^{n} \mid \forall i, j, \forall x \in \mathcal{X}_{i j}, & & \left.s_{i}^{\times} \alpha_{i}+s_{j}^{\times} \alpha_{j} \geq 1\right\} \\
\bar{Q}=\{\alpha & \in \mathbb{R}_{+}^{n} \mid & & \\
& \forall i, \forall x \in \mathcal{X}_{i, i+1}, & & s_{i}^{x} \alpha_{i}+s_{i+1}^{\times} \alpha_{i+1} \geq 1 \\
& \forall i: r^{i} \in \operatorname{cone}\left(r^{i-1}, r^{i+1}\right), & \left.\alpha_{i} \leq \lambda_{i-1}^{i} \alpha_{i-1}+\lambda_{i+1}^{i} \alpha_{i+1}\right\} .
\end{array}
$$

Theorem
$\bar{Q} \subseteq Q$, and all vertices of Q are in \bar{Q}.
Corollary
If $c>0, \begin{array}{cl}\min & c^{\top} \alpha \\ \text { s.t. } & \alpha \in Q\end{array}$ and $\begin{aligned} \min & c^{\top} \alpha \\ \text { s.t. } & \alpha \in \bar{Q}\end{aligned}$ share the same set of optimal solutions.

The complexity of the polar - the theory

$$
\begin{array}{rlrl}
Q=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid \forall i, j, \forall x \in \mathcal{X}_{i j},\right. & & \left.s_{i}^{x} \alpha_{i}+s_{j}^{\times} \alpha_{j} \geq 1\right\} \\
\bar{Q}=\{\alpha & \in \mathbb{R}_{+}^{n} \mid & \\
& \forall i, \forall x \in \mathcal{X}_{i, i+1}, & & s_{i}^{x} \alpha_{i}+s_{i+1}^{x} \alpha_{i+1} \geq 1 \\
& \forall i: r^{i} \in \operatorname{cone}\left(r^{i-1}, r^{i+1}\right), & \left.\alpha_{i} \leq \lambda_{i-1}^{i} \alpha_{i-1}+\lambda_{i+1}^{i} \alpha_{i+1}\right\} .
\end{array}
$$

Theorem
$\bar{Q} \subseteq Q$, and all vertices of Q are in \bar{Q}.
Corollary
If $c>0, \begin{array}{ll}\min & c^{T} \alpha \\ \text { s.t. } & \alpha \in Q\end{array}$ and $\begin{aligned} \min & c^{\top} \alpha \\ \text { s.t. } & \alpha \in \bar{Q}\end{aligned}$ share the same set of optimal solutions.
If $c_{i}<0$, then $\begin{array}{cl}\min & c^{\top} \alpha \\ \text { s.t. } & \alpha \in Q\end{array}$ is unbounded.

Complexity of writing the polar (2)

- For each cone, compute the integer hull.
- For each integer point in each integer hull, compute its representation in the corresponding cone and write one inequality of of the polar.

1. The complexity is quadratic linear in the number of rays.
2. We have a polynomial (but possibly large) number of integer vertices in each cone.

Can we avoid the integer hulls $\mathcal{X}_{i j}$?

$$
\bar{Q}=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid\right.
$$

$$
\forall i, \forall x \in \mathcal{X}_{i, i+1},
$$

$$
s_{i}^{\times} \alpha_{i}+s_{i+1}^{\times} \alpha_{i+1} \geq 1
$$

$$
\forall i: r^{i} \in \operatorname{cone}\left(r^{i-1}, r^{i+1}\right),
$$

$$
\left.\alpha_{i} \leq \lambda_{i-1}^{i} \alpha_{i-1}+\lambda_{i+1}^{i} \alpha_{i+1}\right\}
$$

Can we avoid the integer hulls $\mathcal{X}_{i j}$?

$$
\bar{Q}=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid\right.
$$

$$
\forall i, \forall x \in \mathcal{X}_{i, i+1},
$$

$$
s_{i}^{㐅} \alpha_{i}+s_{i+1}^{\times} \alpha_{i+1} \geq 1
$$

$$
\forall i: r^{i} \in \operatorname{cone}\left(r^{i-1}, r^{i+1}\right),
$$

$$
\left.\alpha_{i} \leq \lambda_{i-1}^{i} \alpha_{i-1}+\lambda_{i+1}^{i} \alpha_{i+1}\right\}
$$

$\bar{Q}(S)=\left\{\alpha \in \mathbb{R}_{+}^{n} \mid\right.$

$$
\begin{array}{ll}
\forall i, \forall x \in S \cap\left(f+\operatorname{cone}\left(r^{i}, r^{i+1}\right)\right), & s_{i}^{x} \alpha_{i}+s_{i+1}^{\times} \alpha_{i+1} \geq 1 \\
\forall i: r^{i} \in \operatorname{cone}\left(r^{i-1}, r^{\prime+1}\right), & \left.\alpha_{i} \leq \lambda_{i-1}^{i} \alpha_{i-1}+\lambda_{i+1}^{i} \alpha_{i+1}\right\},
\end{array}
$$

with $S \subset \mathbb{Z}^{2}$.

Separation algorithm

Separation algorithm

$$
\begin{aligned}
& S:=S_{0} \\
& \text { do \{ } \\
& \alpha:=\operatorname{argmin} c^{\top} \alpha \\
& \text { s.t. } \alpha \in \bar{Q}(S)
\end{aligned}
$$

if L_{α} is lattice-free OK, valid cut, exit. else

Find $x \in \mathbb{Z}^{2} \cap$ interior $\left(L_{\alpha}\right)$.
Add x to S.
\}

Separation algorithm

$$
\begin{aligned}
& S:=S_{0} \\
& \text { do \{ } \\
& \alpha:=\operatorname{argmin} c^{T} \alpha \\
& \text { s.t. } \alpha \in \bar{Q}(S)
\end{aligned}
$$

if L_{α} is lattice-free OK, valid cut, exit. else

Find $x \in \mathbb{Z}^{2} \cap$ interior $\left(L_{\alpha}\right)$.
Add x to S.
\}

Separation algorithm

$$
\begin{aligned}
& S:=S_{0} \\
& \text { do \{ } \\
& \alpha:=\operatorname{argmin} c^{\top} \alpha \\
& \text { s.t. } \alpha \in \bar{Q}(S)
\end{aligned}
$$

Separation algorithm

$$
\begin{aligned}
& S:=S_{0} \\
& \text { do \{ } \\
& \alpha:=\operatorname{argmin} c^{\top} \alpha \\
& \text { s.t. } \alpha \in \bar{Q}(S)
\end{aligned}
$$

Separation algorithm

$$
\begin{aligned}
& S:=S_{0} \\
& \text { do \{ } \\
& \alpha:=\operatorname{argmin} c^{\top} \alpha \\
& \text { s.t. } \alpha \in \bar{Q}(S)
\end{aligned}
$$

Integer pair extension

Integer pair extension

Integer pair extension

Integer pair extension

The oracle

Find an integer point in interior $\left(L_{\alpha}\right)$ or prove that L_{α} is lattice-free.

The oracle

Find an integer point in interior $\left(L_{\alpha}\right)$ or prove that L_{α} is lattice-free.

The oracle

Find an integer point in interior $\left(L_{\alpha}\right)$ or prove that L_{α} is lattice-free.

- possible in polynomial time for any fixed dimension d
(Barvinok's algorithm)

The oracle

Find an integer point in interior $\left(L_{\alpha}\right)$ or prove that L_{α} is lattice-free.

- possible in polynomial time for any fixed dimension d
(Barvinok's algorithm)
- we are in dimension two

- can we find a closed-form 0

The oracle

Find an integer point in interior $\left(L_{\alpha}\right)$ or prove that L_{α} is lattice-free.

- possible in polynomial time for any fixed dimension d
(Barvinok's algorithm)
- we are in dimension two
- we know of integer points on the boundary of L_{α}

The oracle

Find an integer point in interior $\left(L_{\alpha}\right)$ or prove that L_{α} is lattice-free.

- possible in polynomial time for any fixed dimension d
(Barvinok's algorithm)
- we are in dimension two
- we know of integer points on the boundary of L_{α}
- can we find a closed-form formula?

The oracle: $\operatorname{conv}(T)$

Find an integer point in interior $\left(L_{\alpha}\right)$ or prove that L_{α} is lattice-free.

1. Consider the convex hull conv (T) of the known tight integer points: $T:=S \cap$ boundary $\left(L_{\alpha}\right)$.

The oracle: $\operatorname{conv}(T)$

Find an integer point in interior $\left(L_{\alpha}\right)$ or prove that L_{α} is lattice-free.

1. Consider the convex hull conv(T) of the known tight integer points: $T:=S \cap$ boundary $\left(L_{\alpha}\right)$.

- we triangularize $\operatorname{conv}(T)$
\checkmark we wanto frid integer oonits on integer segrents and nteger trianges

\checkmark posisle with moduloarithmetic

The oracle: $\operatorname{conv}(T)$

Find an integer point in interior $\left(L_{\alpha}\right)$ or prove that L_{α} is lattice-free.

1. Consider the convex hull conv(T) of the known tight integer points: $T:=S \cap$ boundary $\left(L_{\alpha}\right)$.

- we triangularize $\operatorname{conv}(T)$
- we want to find integer points on integer segments and integer triangles

The oracle: $\operatorname{conv}(T)$

Find an integer point in interior $\left(L_{\alpha}\right)$ or prove that L_{α} is lattice-free.

1. Consider the convex hull conv (T) of the known tight integer points: $T:=S \cap$ boundary $\left(L_{\alpha}\right)$.

- we triangularize $\operatorname{conv}(T)$
- we want to find integer points on integer segments and integer triangles
- possible with modulo arithmetic

The oracle: $\operatorname{conv}(T)$, continued

Find an integer point in $\operatorname{conv}(T)$ or prove that $\operatorname{conv}(T)$ is lattice-free.
\square

We therefore build w by solving the diophantine system

The oracle: $\operatorname{conv}(T)$, continued

Find an integer point in $\operatorname{conv}(T)$ or prove that $\operatorname{conv}(T)$ is lattice-free.

Theorem

Let T be a triangle with vertices $(0, u, v)$ that has interior lattice points and such that $\operatorname{gcd}\left(u_{1}, u_{2}\right)=\operatorname{gcd}\left(v_{1}, v_{2}\right)=1$. T has an interior lattice point w such that $w=\frac{\lambda}{\operatorname{det}([| | v])} u+\frac{1}{\operatorname{det}([|v|])} v$ with $\lambda \in \mathbb{Z}_{+}$.

The oracle: $\operatorname{conv}(T)$, continued

Find an integer point in $\operatorname{conv}(T)$ or prove that $\operatorname{conv}(T)$ is lattice-free.

Theorem

Let T be a triangle with vertices $(0, u, v)$ that has interior lattice points and such that $\operatorname{gcd}\left(u_{1}, u_{2}\right)=\operatorname{gcd}\left(v_{1}, v_{2}\right)=1$. T has an interior lattice point w such that $w=\frac{\lambda}{\operatorname{det}([u \mid v])} u+\frac{1}{\operatorname{det}([\mid v])} v$ with $\lambda \in \mathbb{Z}_{+}$.

We therefore build w by solving the diophantine system

$$
\left\{\begin{array}{l}
\lambda u_{1}+v_{1}=k_{1} \operatorname{det}([u \mid v]) \\
\lambda u_{2}+v_{2}=k_{2} \operatorname{det}([u \mid v])
\end{array}, \lambda, k_{1}, k_{2} \in \mathbb{Z}\right.
$$

The oracle: Main Theorem

Find an integer point in interior $\left(L_{\alpha}\right)$ or prove that L_{α} is lattice-free.
2. Assume $\operatorname{conv}(T)$ lattice-free.

The oracle: Main Theorem

Find an integer point in interior $\left(L_{\alpha}\right)$ or prove that L_{α} is lattice-free.
2. Assume $\operatorname{conv}(T)$ lattice-free.

Let us define:

- $e^{j k}:=T^{k}-T^{j}$

The oracle: Main Theorem

Find an integer point in interior $\left(L_{\alpha}\right)$ or prove that L_{α} is lattice-free.
2. Assume $\operatorname{conv}(T)$ lattice-free.

Let us define:

- $e^{j k}:=T^{k}-T^{j}$
- $u^{j k}:=\frac{e^{j k}}{\operatorname{gcd}\left(e_{1}^{j k}, e_{2}^{j k}\right)}$

The oracle: Main Theorem

Find an integer point in interior $\left(L_{\alpha}\right)$ or prove that L_{α} is lattice-free.
2. Assume $\operatorname{conv}(T)$ lattice-free.

Let us define:

- $e^{j k}:=T^{k}-T^{j}$
- $u^{j k}:=\frac{e^{j k}}{\operatorname{gcd}\left(e_{1}^{j k}, e_{2}^{j k}\right)}$
- $U^{i j k}:=T^{i}+u^{j k}$

The oracle: Main Theorem

Find an integer point in interior $\left(L_{\alpha}\right)$ or prove that L_{α} is lattice-free.
2. Assume $\operatorname{conv}(T)$ lattice-free.

Let us define:

- $e^{j k}:=T^{k}-T^{j}$
- $u^{j k}:=\frac{e^{j k}}{\operatorname{gcd}\left(e_{1}^{j k}, e_{2}^{j k}\right)}$
- $U^{i j k}:=T^{i}+u^{j k}$

The oracle: Main Theorem

Find an integer point in interior $\left(L_{\alpha}\right)$ or prove that L_{α} is lattice-free.
2. Assume $\operatorname{conv}(T)$ lattice-free.

Let us define:

- $e^{j k}:=T^{k}-T^{j}$
- $u^{j k}:=\frac{e^{j k}}{\operatorname{gcd}\left(e_{1}^{j k}, e_{2}^{j k}\right)}$
- $U^{i j k}:=T^{i}+u^{j k}$

The oracle: Main Theorem

Find an integer point in interior $\left(L_{\alpha}\right)$ or prove that L_{α} is lattice-free.
2. Assume $\operatorname{conv}(T)$ lattice-free.

Let us define:

- $e^{j k}:=T^{k}-T^{j}$
- $u^{j k}:=\frac{e^{j k}}{\operatorname{gcd}\left(e_{1}^{j k}, e_{2}^{j k}\right)}$
- $U^{i j k}:=T^{i}+u^{j k}$

The oracle: Main Theorem

Find an integer point in interior $\left(L_{\alpha}\right)$ or prove that L_{α} is lattice-free.
2. Assume $\operatorname{conv}(T)$ lattice-free.

Let us define:

- $e^{j k}:=T^{k}-T^{j}$
- $u^{j k}:=\frac{e^{j k}}{\operatorname{gcd}\left(e_{1}^{j k}, e_{2}^{j k}\right)}$
- $U^{i j k}:=T^{i}+u^{j k}$

Theorem

If interior $\left(L_{\alpha}\right)$ contains an integer point, then at least one of these $U^{i j k}$ points must also belong to interior $\left(L_{\alpha}\right)$.

Results

Preliminary Computational results

	Average time per cut (ms)	Average CGLP time per cut (\%time)	Average iter. per cut	$\begin{array}{r} \text { Max. } \\ \text { iter. } \\ \text { per cut } \end{array}$
MIPLIB 3	18 ms	99.84\%	1.12	39
MIPLIB 2003	34 ms	99.95\%	1.17	30

Preliminary Computational results

	Average time	Average CGLP time per cut (ms)	Average iter. per cut $(\%$ time $)$	Max. iter.			
MIPLIB 3 cut	per cut				$	$	99.84%
:---							
MIPLIB 2003							

	two-row			CPLEX	
	Average	Average	Average	Average	Average
	\# cuts	\# tight cuts	\%gc	\# cuts	\%gc
MIPLIB 3	2560.6	89.5	35.15%	80.3	51.85
MIPLIB 2003	2900.3	127.3	24.74%	161.4	40.86

Conclusions

We have

- a fast separation for two-row cuts
- a closed-form procedure for guaranteeing validity

Conclusions

We have

- a fast separation for two-row cuts
- a closed-form procedure for guaranteeing validity - means for driving towards deep cuts (with $c^{\top} \alpha$)

Conclusions

We have

- a fast separation for two-row cuts
- a closed-form procedure for guaranteeing validity - means for driving towards deep cuts (with $c^{\prime} \alpha$)

Conclusions

We have

- a fast separation for two-row cuts
- a closed-form procedure for guaranteeing validity
- means for driving towards deep cuts (with $c^{T} \alpha$)

Conclusions

We have

- a fast separation for two-row cuts
- a closed-form procedure for guaranteeing validity
- means for driving towards deep cuts (with $c^{\top} \alpha$)

We need

- a better definition of a "deep" cut
- gond heurictics for the choice of the rows

Conclusions

We have

- a fast separation for two-row cuts
- a closed-form procedure for guaranteeing validity
- means for driving towards deep cuts (with $c^{\top} \alpha$)

We need

- a better definition of a "deep" cut
- good heuristics for the choice of the rows
- a way do choose a good initial basis

Conclusions

We have

- a fast separation for two-row cuts
- a closed-form procedure for guaranteeing validity
- means for driving towards deep cuts (with $c^{\top} \alpha$)

We need

- a better definition of a "deep" cut
- good heuristics for the choice of the rows
- a way do choose a good initial basis

Conclusions

We have

- a fast separation for two-row cuts
- a closed-form procedure for guaranteeing validity
- means for driving towards deep cuts (with $c^{\top} \alpha$)

We need

- a better definition of a "deep" cut
- good heuristics for the choice of the rows
- a way do choose a good initial basis
\longrightarrow
///////

|||||||

Future directions

Future directions

- objective function
- basis choice: what is a good basis?
- basis choice: impact of a pivot on Q
- choice of the rows
- separation of $x \neq x_{L P}^{*}$
- cut handling
- (algorithm complexity)
- strengthening (lifting)
- more than two rows

