Université de Liège MATH0461-1

Optimisation numérique - répétition 9

Line search, branch and bound

30 avril 2010

Question 1. Exemple de chemin central.

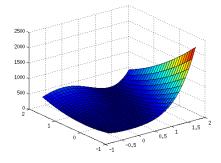
1. Trouvez, sous la forme $y(\mu)$, le chemin central de

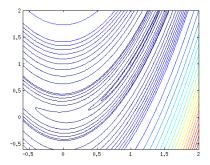
$$\begin{array}{ll} \max & y_1 \\ s.t. & y_1 \ge 0 \\ & y_2 \ge 0 \\ & y_1 + y_2 \le 1. \end{array}$$

- 2. Quel est l'optimum du problème? Quel est le centre analytique du polyèdre?
- 3. Que se passe-t-il si on considère min y_1 comme objectif?
- 4. Ecrivez le dual.
- 5. Déduisez, sans trop de calculs, quelle est l'équation du chemin central dual $x(\mu)$.
- 6. Vérifiez que le saut de dualité entre $x(\mu)$ et $y(\mu)$ prend sa valeur théorique.

Question 2. [Problème de Rosenbrock] Trouver une approximation du minimum de la fonction

$$f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$





- 1. en effectuant trois itérations de la méthode de descente du gradient avec recherche linéaire.
- 2. en effectuant trois itérations de la méthode de Newton avec recherche linéaire.

Question 3. Résoudre géométriquement par branch-and-bound

Question 4. Résoudre géométriquement par branch-and-bound

Question 5. Résoudre le problème discret

$$\max z = 17x_1 + 10x_2 + 25x_3 + 17x_4$$

s.t.
$$5x_1 + 3x_2 + 8x_3 + 7x_4 \le 15$$
$$x_1, x_2, x_3, x_4 \in \{0, 1\}$$

Question 6. Résoudre le problème discret

$$\max z = 2x_1 + 14x_2 + 3x_3 + 5x_4$$

s.t.
$$x_1 + 8x_2 + 2x_3 + 6x_4 \le 10$$
$$x_1, x_2, x_3, x_4 \in \{0, 1\}$$