Math 115 Spring 2015: Assignment 9

Solutions

1. [5 marks] Let

$$
\vec{v}_{1}=\left[\begin{array}{c}
\frac{2}{3} \\
\frac{2}{3} \\
\frac{1}{3}
\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{c}
\frac{2}{3} \\
-\frac{1}{3} \\
-\frac{2}{3}
\end{array}\right] \quad \vec{v}_{3}=\left[\begin{array}{c}
\frac{1}{3} \\
-\frac{2}{3} \\
\frac{2}{3}
\end{array}\right]
$$

Knowing that $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is an orthonormal basis of \mathbb{R}^{3}, write the vector $\vec{x}=\left[\begin{array}{c}6 \\ -6 \\ 15\end{array}\right]$ as a linear combination of $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$.

Solution: Note that since $\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}=\mathbb{R}^{3}$, it is clear that $\vec{x} \in \operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$. Therefore, because $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is orthonormal, we can write

$$
\vec{x}=t_{1} \vec{v}_{1}+t_{2} \vec{v}_{2}+t_{3} \vec{v}_{3}
$$

where

$$
t_{1}=\vec{x} \cdot \vec{v}_{1}, \quad t_{2}=\vec{x} \cdot \vec{v}_{2}, \quad t_{3}=\vec{x} \cdot \vec{v}_{3} .
$$

We have

$$
\begin{aligned}
& t_{1}=\left[\begin{array}{c}
6 \\
-6 \\
15
\end{array}\right] \cdot\left[\begin{array}{l}
\frac{2}{3} \\
\frac{2}{3} \\
\frac{1}{3}
\end{array}\right]=4-4+5=5 \\
& t_{2}=\left[\begin{array}{c}
6 \\
-6 \\
15
\end{array}\right] \cdot\left[\begin{array}{c}
\frac{2}{3} \\
-\frac{1}{3} \\
-\frac{2}{3}
\end{array}\right]=4+2-10=-4 \\
& t_{3}=\left[\begin{array}{c}
6 \\
-6 \\
15
\end{array}\right] \cdot\left[\begin{array}{c}
\frac{1}{3} \\
-\frac{2}{3} \\
\frac{2}{3}
\end{array}\right]=2+4+10=16
\end{aligned}
$$

so

$$
\vec{x}=5 \vec{v}_{1}-4 \vec{v}_{2}+16 \vec{v}_{3} .
$$

2. [5 marks] Let $S=\operatorname{span}\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$, with

$$
\vec{u}_{1}=\left[\begin{array}{c}
1 \\
1 \\
-1 \\
0
\end{array}\right], \quad \text { and } \quad \vec{u}_{2}=\left[\begin{array}{c}
0 \\
0 \\
1 \\
1
\end{array}\right] .
$$

Find a basis of S^{\perp}. Hint: A vector is orthogonal to S if and only if it is orthogonal to both \vec{u}_{1} and \vec{u}_{2}.

Solution: For a vector $\vec{x} \in \mathbb{R}^{4}$ to be orthogonal to S, it has to satisfy the following equations:

$$
\left\{\begin{array}{l}
\vec{x} \cdot \vec{u}_{1}=0 \\
\vec{x} \cdot \vec{u}_{2}=0
\end{array}\right.
$$

This can be written as

$$
\left[\begin{array}{cccc}
1 & 1 & -1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \vec{x}=\overrightarrow{0}
$$

We solve this system by writing its augmented matrix

$$
\left[\begin{array}{cccc|c}
1 & 1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{llll|l}
1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

and obtain that

$$
\vec{x}=s\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
0 \\
-1 \\
1
\end{array}\right]
$$

Therefore,

$$
\left\{\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
-1 \\
1
\end{array}\right]\right\}
$$

is a basis of S^{\perp}.
3. [10 marks] Let

$$
\vec{w}_{1}=\left[\begin{array}{c}
1 \\
1 \\
-1 \\
0
\end{array}\right], \quad \vec{w}_{2}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right] \quad \text { and } \quad \vec{w}_{3}=\left[\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right]
$$

Find an orthonormal basis of $\operatorname{span}\left\{\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}\right\}$.

Solution: For the first vector, we set

$$
\vec{v}_{1}=\frac{\vec{w}_{1}}{\left|\vec{w}_{1}\right|}=\frac{1}{\sqrt{1^{2}+1^{2}+(-1)^{2}+0^{2}}}\left[\begin{array}{c}
1 \\
1 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{3}} \\
0
\end{array}\right]
$$

For the second vector, we have

$$
\begin{aligned}
\vec{u}_{2} & =\vec{w}_{2}-\left(\vec{w}_{2} \cdot \vec{v}_{1}\right) \vec{v}_{1} \\
& =\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]-\left(\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{3}} \\
0
\end{array}\right]\right)\left[\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{3}} \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]+\frac{1}{\sqrt{3}}\left[\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{3}} \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{3} \\
\frac{1}{3} \\
\frac{2}{3} \\
1
\end{array}\right]
\end{aligned}
$$

and

$$
\vec{v}_{2}=\frac{\vec{u}_{2}}{\left|\vec{u}_{2}\right|}=\frac{1}{\sqrt{\left(\frac{1}{3}\right)^{2}+\left(\frac{1}{3}\right)^{2}+\left(\frac{2}{3}\right)^{2}+1^{2}}}\left[\begin{array}{c}
-\frac{1}{3} \\
-\frac{1}{3} \\
\frac{1}{3} \\
0
\end{array}\right]=\frac{3}{\sqrt{15}}\left[\begin{array}{c}
\frac{1}{3} \\
\frac{1}{3} \\
\frac{2}{3} \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{\sqrt{15}} \\
\frac{1}{\sqrt{15}} \\
\frac{2}{\sqrt{15}} \\
\frac{3}{\sqrt{15}}
\end{array}\right] .
$$

For the third vector, we have

$$
\begin{aligned}
\vec{u}_{3} & =\vec{w}_{3}-\left(\vec{w}_{3} \cdot \vec{v}_{1}\right) \vec{v}_{1}-\left(\vec{w}_{3} \cdot \vec{v}_{2}\right) \vec{v}_{2} \\
& =\left[\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right]-\left(\left[\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right] \cdot\left[\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{3}} \\
0
\end{array}\right]\right)\left[\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{3}} \\
0
\end{array}\right]-\left(\left[\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right] \cdot\left[\begin{array}{c}
\frac{1}{\sqrt{15}} \\
\frac{1}{\sqrt{15}} \\
\frac{2}{\sqrt{15}} \\
\frac{3}{\sqrt{15}}
\end{array}\right]\right)\left[\begin{array}{c}
\frac{1}{\sqrt{15}} \\
\frac{1}{\sqrt{15}} \\
\frac{2}{\sqrt{15}} \\
\frac{3}{\sqrt{15}}
\end{array}\right] \\
& =\left[\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right]-\sqrt{3}\left[\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{3}} \\
0
\end{array}\right]-\frac{\sqrt{3}}{\sqrt{5}}\left[\begin{array}{c}
\frac{1}{\sqrt{15}} \\
\frac{1}{\sqrt{15}} \\
\frac{2}{\sqrt{15}} \\
\frac{3}{\sqrt{15}}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right]-\left[\begin{array}{c}
1 \\
1 \\
-1 \\
0
\end{array}\right]-\left[\begin{array}{c}
\frac{1}{5} \\
\frac{1}{5} \\
\frac{2}{5} \\
\frac{3}{5}
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{5} \\
\frac{4}{5} \\
\frac{3}{5} \\
-\frac{3}{5}
\end{array}\right]
\end{aligned}
$$

and

$$
\vec{v}_{3}=\frac{\vec{u}_{3}}{\left|\vec{u}_{3}\right|}=\frac{1}{\sqrt{\left(-\frac{1}{5}\right)^{2}+\left(\frac{4}{5}\right)^{2}+\left(\frac{3}{5}\right)^{2}+\left(-\frac{3}{5}\right)^{2}}}\left[\begin{array}{c}
-\frac{1}{5} \\
\frac{4}{5} \\
\frac{3}{5} \\
-\frac{3}{5}
\end{array}\right]=\frac{3}{\sqrt{15}}\left[\begin{array}{c}
-\frac{1}{5} \\
\frac{4}{5} \\
\frac{3}{5} \\
-\frac{3}{5}
\end{array}\right]=\frac{5}{\sqrt{35}}\left[\begin{array}{c}
-\frac{1}{5} \\
\frac{4}{5} \\
\frac{3}{5} \\
-\frac{3}{5}
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{\sqrt{35}} \\
\frac{4}{\sqrt{35}} \\
\frac{3}{\sqrt{35}} \\
-\frac{3}{\sqrt{35}}
\end{array}\right] .
$$

An orthonormal basis of $\operatorname{span}\left\{\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}\right\}$ is thus given by

$$
\left\{\left[\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{3}} \\
0
\end{array}\right],\left[\begin{array}{c}
\frac{1}{\sqrt{15}} \\
\frac{1}{\sqrt{15}} \\
\frac{2}{\sqrt{15}} \\
\frac{3}{\sqrt{15}}
\end{array}\right],\left[\begin{array}{c}
-\frac{1}{\sqrt{35}} \\
\frac{4}{\sqrt{35}} \\
\frac{3}{\sqrt{35}} \\
-\frac{3}{\sqrt{35}}
\end{array}\right]\right\}
$$

4. [10 marks] Orthogonally diagonalize the matrix

$$
A=\left[\begin{array}{ccc}
1 & -2 & 2 \\
-2 & 4 & -4 \\
2 & -4 & 4
\end{array}\right]
$$

i.e. find an orthogonal matrix Q and a diagonal matrix D such that $Q^{T} A Q=D$.

Solution: First, we find the eigenvalues of A. The characteristic polynomial of A is

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I) \\
= & \operatorname{det}\left[\begin{array}{ccc}
1-\lambda & -2 & 2 \\
-2 & 4-\lambda & -4 \\
2 & -4 & 4-\lambda
\end{array}\right] \\
= & (1-\lambda) \operatorname{det}\left[\begin{array}{cc}
4-\lambda & -4 \\
-4 & 4-\lambda
\end{array}\right]+2 \operatorname{det}\left[\begin{array}{cc}
-2 & -4 \\
2 & 4-\lambda
\end{array}\right]+2 \operatorname{det}\left[\begin{array}{cc}
-2 & 4-\lambda \\
2 & -4
\end{array}\right] \\
= & (1-\lambda)\left(16+\lambda^{2}-8 \lambda-16\right)+2(-8+2 \lambda+8)+2(8-8+2 \lambda) \\
= & -\lambda^{3}+9 \lambda^{2}=-\lambda^{2}(\lambda-9)
\end{aligned}
$$

First eigenvalue: $\lambda=0$.
The corresponding eigenvectors \vec{u} satisfy $A \vec{u}=0 \vec{u}$. The augmented matrix of this system is

$$
\left[\begin{array}{ccc|c}
1 & -2 & 2 & 0 \\
-2 & 4 & -4 & 0 \\
2 & -4 & 4 & 0
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & -2 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We thus have $u_{1}=2 u_{2}-2 u_{3}$ so

$$
\vec{u}=s\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right], \quad s, t \in \mathbb{R}
$$

We need an orthonormal basis of this eigenspace. So we apply Gram-Schmidt on

$$
\vec{w}_{1}=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right] \text { and } \vec{w}_{2}=\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right]
$$

We get

$$
\vec{r}_{1}=\left[\begin{array}{c}
\frac{2}{\sqrt{5}} \\
\frac{1}{\sqrt{5}} \\
0
\end{array}\right]
$$

and

$$
\vec{q}_{2}=\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right]-\left(\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
\frac{2}{\sqrt{5}} \\
\frac{1}{\sqrt{5}} \\
0
\end{array}\right]\right)\left[\begin{array}{c}
\frac{2}{\sqrt{5}} \\
\frac{1}{\sqrt{5}} \\
0
\end{array}\right]=\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right]+\frac{4}{\sqrt{5}}\left[\begin{array}{c}
\frac{2}{\sqrt{5}} \\
\frac{1}{\sqrt{5}} \\
0
\end{array}\right]=\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{8}{5} \\
\frac{4}{5} \\
0
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{5} \\
\frac{4}{5} \\
1
\end{array}\right]
$$

which we normalize:

$$
\vec{r}_{2}=\left[\begin{array}{c}
-\frac{2}{\sqrt{45}} \\
\frac{4}{\sqrt{45}} \\
\frac{5}{\sqrt{45}}
\end{array}\right]
$$

Second eigenvalue: $\lambda=9$.
The corresponding eigenvectors \vec{v} satisfy $A \vec{v}=9 \vec{v}$. The augmented matrix of the system $(A-9 I) \vec{v}=\overrightarrow{0}$ is

$$
\left[\begin{array}{ccc|c}
-8 & -2 & 2 & 0 \\
-2 & -5 & -4 & 0 \\
2 & -4 & -5 & 0
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 0 & -\frac{1}{2} & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We thus have $v_{1}=\frac{1}{2} v_{3}$ and $v_{2}=-v_{3}$ so

$$
\vec{v}=s\left[\begin{array}{c}
\frac{1}{2} \\
-1 \\
1
\end{array}\right], \quad s \in \mathbb{R}
$$

In order to obtain an orthonormal basis of this eigenspace, we normalize the basis vector and get

$$
\vec{r}_{3}=\left[\begin{array}{c}
\frac{1}{3} \\
-\frac{2}{3} \\
\frac{2}{3}
\end{array}\right] .
$$

Constructing P : We have

$$
P=\left[\begin{array}{ccc}
\frac{2}{\sqrt{5}} & -\frac{2}{\sqrt{45}} & \frac{1}{3} \\
\frac{1}{\sqrt{5}} & \frac{4}{\sqrt{45}} & -\frac{2}{3} \\
0 & \frac{5}{\sqrt{45}} & \frac{2}{3}
\end{array}\right]
$$

And we could verify that

$$
P^{T} A P=D=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 9
\end{array}\right]
$$

5. (a) [3 marks] Show that the following statement is false by providing a counter-example:

Let $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ be a basis of \mathbb{R}^{n} and $S=\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ for some positive integer $k<n$. Then

$$
S^{\perp}=\operatorname{span}\left\{\vec{v}_{k+1}, \ldots, \vec{v}_{n}\right\} .
$$

(b) [2 marks] What additional property would $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ need for the statement to be true? (no proof necessary)

Solution: (a) Take

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { and } \quad \vec{v}_{2}=\left[\begin{array}{c}
1 \\
1
\end{array}\right]
$$

The vectors are linearly independent and $\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}=\mathbb{R}^{2}$, so $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ is a basis of \mathbb{R}^{2}. However,

$$
\operatorname{span}\left\{\vec{v}_{1}\right\}^{\perp}=\operatorname{span}\left\{\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\} \neq \operatorname{span}\left\{\vec{v}_{2}\right\}
$$

(b) If $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ was an orthonormal basis of \mathbb{R}^{n}, then the statement would be true.
6. [5 marks] Prove that the determinant of an orthogonal matrix is always 1 or -1 . Hint: Recall that for any square matrix A, we have $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$. Also, if A is invertible, then $A^{-1} A=I$.

Solution: Let A be an orthogonal matrix, we have $A^{-1}=A^{T}$ so $A^{T} A=I$. Taking the determinant of both sides yields

$$
\begin{aligned}
A^{T} A & =I \\
\operatorname{det}\left(A^{T} A\right) & =\operatorname{det}(I) \\
\operatorname{det}\left(A^{T}\right) \operatorname{det}(A) & =1 \\
\operatorname{det}(A) \operatorname{det}(A) & =1 \\
(\operatorname{det}(A))^{2} & =1
\end{aligned}
$$

Therefore $\operatorname{det}(A)= \pm \sqrt{1}= \pm 1$.

