Math 115 Spring 2015: Assignment 8

Solutions

1. Let

$$
A=\left[\begin{array}{ccc}
1 & 6 & -3 \\
0 & 4 & 0 \\
-3 & 6 & 1
\end{array}\right]
$$

(a) [5 marks] Find the eigenvalues of A. For each eigenvalue, give the algebraic multiplicity, determine a basis of the corresponding eigenspace, and give the geometric multiplicity.

Solution:

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left[\begin{array}{ccc}
1-\lambda & 6 & -3 \\
0 & 4-\lambda & 0 \\
-3 & 6 & 1-\lambda
\end{array}\right] \\
& =(4-\lambda) \cdot(-1)^{2+2} \cdot \operatorname{det}\left[\begin{array}{cc}
1-\lambda & -3 \\
-3 & 1-\lambda
\end{array}\right] \\
& =(4-\lambda) \cdot((1-\lambda) \cdot(1-\lambda)-(-3) \cdot(-3)) \\
& =(4-\lambda) \cdot\left(1+\lambda^{2}-2 \lambda-9\right) \\
& =(4-\lambda) \cdot\left(\lambda^{2}-2 \lambda-8\right)
\end{aligned}
$$

We need to find the roots of $\lambda^{2}-2 \lambda-8$. The discriminant is given by

$$
\delta=2^{2}-4.1 \cdot(-8)=4+32=36
$$

and the roots are

$$
\lambda=\frac{-(-2) \pm \sqrt{36}}{2.1}=\frac{2 \pm 6}{2}
$$

so 4 and -2 . Therefore,

$$
\operatorname{det}(A-\lambda I)=(4-\lambda)(4-\lambda)(2+\lambda)
$$

First eigenvalue: $\lambda_{1}=4$, algebraic multiplicity 2 . The system

$$
\left[\begin{array}{ccc}
-3 & 6 & -3 \\
0 & 0 & 0 \\
-3 & 6 & -3
\end{array}\right] \vec{v}=\overrightarrow{0}
$$

has the augmented matrix

$$
\left[\begin{array}{ccc|c}
-3 & 6 & -3 & 0 \\
0 & 0 & 0 & 0 \\
-3 & 6 & -3 & 0
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & -2 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

So

$$
\vec{v}_{1}=s\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right], \quad s, t \in \mathbb{R}
$$

And a basis of the eigenspace associated to eigenvalue 4 is given by $\left\{\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right\}$. The geometric multiplicity of this eigenvalue is 2 .
Second eigenvalue: $\lambda_{2}=-2$, algebraic multiplicity 2. The system

$$
\left[\begin{array}{ccc}
3 & 6 & -3 \\
0 & 6 & 0 \\
-3 & 6 & 3
\end{array}\right] \vec{v}=\overrightarrow{0}
$$

has the augmented matrix

$$
\left[\begin{array}{ccc|c}
3 & 6 & -3 & 0 \\
0 & 6 & 0 & 0 \\
-3 & 6 & 3 & 0
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

so

$$
\vec{v}_{2}=t\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad t \in \mathbb{R}
$$

And a basis of the eigenspace associated to eigenvalue -2 is given by $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$. The geometric multiplicity of this eigenvalue is 1 .
(b) [1 mark] Diagonalize A by finding an invertible matrix P and a diagonal matrix D such that $P^{-1} A P=D$

Solution: We collect the three basis vectors for the eigenspaces of all eigenvalues of A found above as columns of P. We construct D as a matrix whose diagonal elements are the corresponding eigenvalues.

$$
P=\left[\begin{array}{ccc}
1 & 2 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \quad D=\operatorname{diag}(4,4,-2)=\left[\begin{array}{ccc}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & -2
\end{array}\right]
$$

2. [5 marks] Determine a matrix $B \in \mathbb{R}^{2 \times 2}$ for which $\left[\begin{array}{c}3 \\ -2\end{array}\right]$ and $\left[\begin{array}{c}-4 \\ 3\end{array}\right]$ are eigenvectors, with corresponding eigenvalue -4 and 2, respectively.

Solution:

$$
\begin{aligned}
P^{-1} B P & =\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right) \\
B & =P \operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right) P^{-1} \\
B & =\left[\begin{array}{cc}
3 & -4 \\
-2 & 3
\end{array}\right] \operatorname{diag}(-4,2)\left[\begin{array}{cc}
3 & -4 \\
-2 & 3
\end{array}\right]^{-1} \\
B & =\left[\begin{array}{cc}
3 & -4 \\
-2 & 3
\end{array}\right]\left[\begin{array}{cc}
-4 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{cc}
3 & -4 \\
-2 & 3
\end{array}\right]^{-1}
\end{aligned}
$$

We compute the inverse of $\left[\begin{array}{cc}3 & -4 \\ -2 & 3\end{array}\right]$:

$$
\left[\begin{array}{cc|cc}
3 & -4 & 1 & 0 \\
-2 & 3 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{ll|ll}
1 & 0 & 3 & 4 \\
0 & 1 & 2 & 3
\end{array}\right]
$$

so

$$
\begin{aligned}
B & =\left[\begin{array}{cc}
3 & -4 \\
-2 & 3
\end{array}\right]\left[\begin{array}{cc}
-4 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{ll}
3 & 4 \\
2 & 3
\end{array}\right] \\
& =\left[\begin{array}{cc}
3 & -4 \\
-2 & 3
\end{array}\right]\left[\begin{array}{cc}
-12 & -16 \\
4 & 6
\end{array}\right] \\
& =\left[\begin{array}{cc}
-52 & -72 \\
36 & 50
\end{array}\right]
\end{aligned}
$$

3. [4 marks] Let $C \in \mathbb{R}^{n \times n}$ be a diagonalizable matrix that has n distinct eigenvalues. Prove that $\operatorname{det}(C)$ is the product of the n eigenvalues of C.
Solution: Since C is diagonalizable, there exists an invertible matrix $R \in \mathbb{R}^{n \times n}$ such that

$$
R^{-1} C R=\operatorname{diag}\left(\nu_{1}, \ldots, \nu_{n}\right)
$$

where ν_{1}, \ldots, ν_{n} are the eigenvalues of C. Then, $C=R \operatorname{diag}\left(\nu_{1}, \ldots, \nu_{n}\right) R^{-1}$ and

$$
\begin{aligned}
\operatorname{det}(C) & =\operatorname{det}(R) \operatorname{det}\left(\operatorname{diag}\left(\nu_{1}, \ldots, \nu_{n}\right)\right) \operatorname{det}\left(R^{-1}\right) \\
& =\operatorname{det}(R) \operatorname{det}\left(\operatorname{diag}\left(\nu_{1}, \ldots, \nu_{n}\right)\right) \frac{1}{\operatorname{det}(R)} \\
& =\operatorname{det}\left(\operatorname{diag}\left(\nu_{1}, \ldots, \nu_{n}\right)\right) \\
& =\nu_{1} \cdots \cdots \nu_{n}
\end{aligned}
$$

4. [5 marks] Let $G \in \mathbb{R}^{n \times n}$ be a diagonalizable matrix such that $Q^{-1} G Q=\operatorname{diag}\left(\mu_{1}, \ldots, \mu_{n}\right)$. Find an expression of G^{4} that does not involve G (it may involve, Q and μ_{1}, \ldots, μ_{n}). Give the eigenvalues of G^{4}.
Solution:

$$
G=Q \operatorname{diag}\left(\mu_{1}, \ldots, \mu_{n}\right) Q^{-1}
$$

SO

$$
\begin{aligned}
G^{k} & =\left(Q \operatorname{diag}\left(\mu_{1}, \ldots, \mu_{n}\right) Q^{-1}\right)\left(Q \operatorname{diag}\left(\mu_{1}, \ldots, \mu_{n}\right) Q^{-1}\right)\left(Q \operatorname{diag}\left(\mu_{1}, \ldots, \mu_{n}\right) Q^{-1}\right)\left(Q \operatorname{diag}\left(\mu_{1}, \ldots, \mu_{n}\right) Q^{-1}\right) \\
& =Q \operatorname{diag}\left(\mu_{1}, \ldots, \mu_{n}\right) Q^{-1} Q \operatorname{diag}\left(\mu_{1}, \ldots, \mu_{n}\right) Q^{-1} Q \operatorname{diag}\left(\mu_{1}, \ldots, \mu_{n}\right) Q^{-1} Q \operatorname{diag}\left(\mu_{1}, \ldots, \mu_{n}\right) Q^{-1} \\
& =Q \operatorname{diag}\left(\mu_{1}, \ldots, \mu_{n}\right) \operatorname{diag}\left(\mu_{1}, \ldots, \mu_{n}\right) \operatorname{diag}\left(\mu_{1}, \ldots, \mu_{n}\right) \operatorname{diag}\left(\mu_{1}, \ldots, \mu_{n}\right) Q^{-1} \\
& =Q \operatorname{diag}\left(\mu_{1}, \ldots, \mu_{n}\right)^{4} Q^{-1} \\
& =Q \operatorname{diag}\left(\mu_{1}^{4}, \ldots, \mu_{n}^{4}\right) Q^{-1}
\end{aligned}
$$

The eigenvalues of G^{4} are $\mu_{1}^{4}, \ldots, \mu_{n}^{4}$.

