Math 115 Spring 2015: Assignment 7

Solutions

1. [5 marks] Let

$$
A=\left[\begin{array}{ccc}
4 & 2 a+2 b & 2 a \\
2 & a+b+1 & a+b \\
2 & a+b+1 & a+b+1
\end{array}\right]
$$

where $a, b \in \mathbb{R}$. The determinant of A is a constant independent of a and b. Find its value. Hint: Compute the REF of A.

Solution: We put A in REF and obtain (for example)

$$
\left[\begin{array}{ccc}
4 & 2 a+2 b & 2 a \\
2 & a+b+1 & a+b \\
2 & a+b+1 & a+b+1
\end{array}\right] \sim\left[\begin{array}{ccc}
4 & 2 a+2 b & 2 a \\
0 & 1 & b \\
0 & 1 & b+1
\end{array}\right] \sim\left[\begin{array}{ccc}
4 & 2 a+2 b & 2 a \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right]
$$

We only performed row operations of the type "adding a multiple of a row to another" so we did not affect the determinant. The last matrix is triangular so its determinant is the product of the diagonal elements. Therefore, $\operatorname{det}(A)=4.1 .1=4$.
2. [5 marks] Let

$$
B=\left[\begin{array}{ccc}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right], \quad \text { and } \quad C=\left[\begin{array}{ccc}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
t \cdot b_{31} & t \cdot b_{32} & t \cdot b_{33}
\end{array}\right]
$$

for $t \in \mathbb{R}$. Use Cramer's rule to prove that

$$
\text { if } \quad B^{-1}=\left[\begin{array}{lll}
g_{11} & g_{12} & g_{13} \\
g_{21} & g_{22} & g_{23} \\
g_{31} & g_{32} & g_{33}
\end{array}\right], \quad \text { then } \quad C^{-1}=\left[\begin{array}{ccc}
g_{11} & g_{12} & \frac{1}{t} \cdot g_{13} \\
g_{21} & g_{22} & \frac{1}{t} \cdot g_{23} \\
g_{31} & g_{32} & \frac{1}{t} \cdot g_{33}
\end{array}\right]
$$

Solution: By Cramer's rule,

$$
\begin{aligned}
& B^{-1}=\frac{1}{\operatorname{det}(B)} \operatorname{cof}(B)^{T} \quad \text { and } \\
& C^{-1}=\frac{1}{\operatorname{det}(C)} \operatorname{cof}(C)^{T}
\end{aligned}
$$

First, note that C is obtained by multiplying the third row of B by t . Therefore, $\operatorname{det}(C)=t \operatorname{det}(B)$.
Furthermore, the third row of $\operatorname{cof}(C)$ is the same as the third row of $\operatorname{cof}(B)$, because the first and second row of B and C are the same. For the other two rows of $\operatorname{cof}(C)$, the values are the corresponding values of $\operatorname{cof}(B)$ multiplied by t. Indeed, they correspond to the determinant of the same submatrix, except that one row has been multiplied by t in the case of $\operatorname{cof}(C)$.

Therefore, we obtain that

$$
C^{-1}=\frac{1}{t \cdot \operatorname{det}(B)}\left[\begin{array}{ccc}
t C_{11} & t C_{21} & C_{31} \\
t C_{11} & t C_{21} & C_{31} \\
t C_{11} & t C_{21} & C_{31}
\end{array}\right]=\frac{1}{\operatorname{det}(B)}\left[\begin{array}{lll}
C_{11} & C_{21} & \frac{1}{t} C_{31} \\
C_{11} & C_{21} & \frac{1}{t} C_{31} \\
C_{11} & C_{21} & \frac{1}{t} C_{31}
\end{array}\right]
$$

where $C_{i j}$ are the cofactors of B.
3. [5 marks] For each of the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$, determine whether or not it is an eigenvector of E. If so, determine its corresponding eigenvalue.

$$
E=\left[\begin{array}{ccc}
12 & -18 & 6 \\
13 & -17 & 6 \\
11 & -9 & 4
\end{array}\right], \quad \vec{v}_{1}=\left[\begin{array}{c}
3 \\
1 \\
-4
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{c}
0 \\
-1 \\
3
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{c}
-1 \\
1 \\
5
\end{array}\right]
$$

Solution:

$$
E \cdot \vec{v}_{1}=\left[\begin{array}{ccc}
12 & -18 & 6 \\
13 & -17 & 6 \\
11 & -9 & 4
\end{array}\right] \cdot\left[\begin{array}{c}
3 \\
1 \\
-4
\end{array}\right]=\left[\begin{array}{c}
-6 \\
-2 \\
8
\end{array}\right]=-2 \cdot\left[\begin{array}{c}
3 \\
1 \\
-4
\end{array}\right]
$$

So \vec{v}_{1} is an eigenvector of E (the associated eigenvalue is -2).

$$
E \cdot \vec{v}_{2}=\left[\begin{array}{ccc}
12 & -18 & 6 \\
13 & -17 & 6 \\
11 & -9 & 4
\end{array}\right] \cdot\left[\begin{array}{c}
0 \\
-1 \\
3
\end{array}\right]=\left[\begin{array}{l}
36 \\
35 \\
21
\end{array}\right]
$$

which is not a scalar multiple of \vec{v}_{2}. So \vec{v}_{2} is not an eigenvector of E.

$$
E \cdot \vec{v}_{3}=\left[\begin{array}{ccc}
12 & -18 & 6 \\
13 & -17 & 6 \\
11 & -9 & 4
\end{array}\right] \cdot\left[\begin{array}{c}
-1 \\
1 \\
5
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

which is a scalar multiple of $\left[\begin{array}{c}-1 \\ 1 \\ 5\end{array}\right]$, with scalar multiplier zero. So \vec{v}_{3} is an eigenvector of E (with associated eigenvalue 0).
4. [5 marks] Prove that if λ is an eigenvalue of $D \in \mathbb{R}^{n \times n}$, then λ^{2} is an eigenvalue of $D \cdot D$.

Solution: Since λ is an eigenvalue of $D \in \mathbb{R}^{n \times n}$, there exist a corresponding eigenvector $\vec{v} \in \mathbb{R}^{n}$, i.e. a vector such that $D \vec{v}=\lambda \vec{v}$.

Let us compute $D \cdot D \cdot \vec{v}$:

$$
\begin{aligned}
(D \cdot D) \cdot \vec{v} & =D \cdot(D \cdot \vec{v}) \\
& =D \cdot(\lambda \vec{v}) \\
& =\lambda(D \cdot \vec{v}) \\
& =\lambda(\lambda \vec{v}) \\
& =\lambda^{2} \vec{v}
\end{aligned}
$$

Therefore, λ^{2} is an eigenvalue of $(D \cdot D)$ (and \vec{v} is a corresponding eigenvector).

