Math 115 Spring 2015: Assignment 6

Solutions

1. [5 marks] Let $G=\left[\begin{array}{ccc}2 & 1 & 0 \\ 4 & 2 & 1 \\ 5 & 3 & 0\end{array}\right]$. Compute G^{-1}.

Solution: We compute the RREF of $\left[\begin{array}{ccc|ccc}2 & 1 & 0 & 1 & 0 & 0 \\ 4 & 2 & 1 & 0 & 1 & 0 \\ 5 & 3 & 0 & 0 & 0 & 1\end{array}\right]$. and obtain $\left[\begin{array}{ccc|ccc}1 & 0 & 0 & 3 & 0 & -1 \\ 0 & 1 & 0 & -5 & 0 & 2 \\ 0 & 0 & 1 & -2 & 1 & 0\end{array}\right]$. so
$G^{-1}=\left[\begin{array}{ccc}3 & 0 & -1 \\ -5 & 0 & 2 \\ -2 & 1 & 0\end{array}\right]$.
2. [4 marks] Let

$$
A=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
1 & 4 & 2 & 0 & 1 \\
2 & 3 & 5 & 1 & 2 \\
4 & 1 & 1 & 0 & 0 \\
5 & 0 & 1 & 0 & 0
\end{array}\right]
$$

Compute $\operatorname{det}(A)$. Hint: choose carefully the columns or rows to expand in order to reduce your work.

Solution: We notice that the fourth column of A has only one element different from zero. It thus seems like an good choice for expansion: $\operatorname{det}(A)=a_{14} C_{14}+a_{24} C_{24}+a_{34} C_{34}+a_{44} C_{44}+a_{54} C_{54}=1 . C_{34}$. The cofactor C_{34} evaluates to $(-1)^{3+4} \operatorname{det}(A(3,4))$ where $A(3,4)$ is the matrix obtained from A by removing the third row and the fourth column. Thus,

$$
\operatorname{det}(A)=C_{34}=-1 . \operatorname{det}\left(\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 4 & 2 & 1 \\
4 & 1 & 1 & 0 \\
5 & 0 & 1 & 0
\end{array}\right]\right)
$$

The first row of $A(3,4)$ only has one nonzero, so we compute the determinant of $A(3,4)$ using that row. We denote by $C_{i j}^{\prime}$ the cofactors of $A(3,4)$, and get

$$
\operatorname{det}(A)=-1 .\left(1 . C_{11}^{\prime}+0 . C_{12}^{\prime}+0 . C_{13}^{\prime}+0 . C_{14}^{\prime}\right)=-1 . C_{11}^{\prime}=-1 .(-1)^{1+1} \cdot \operatorname{det}\left(\left[\begin{array}{ccc}
4 & 2 & 1 \\
1 & 1 & 0 \\
0 & 1 & 0
\end{array}\right]\right)
$$

Again, we only have one cofactor to compute. This time, we use the third column for determinant expansion.

$$
\operatorname{det}(A)=-1 \cdot 1 \cdot(-1)^{1+3} \cdot \operatorname{det}\left(\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\right)
$$

Since the determinant of $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is $(a d-b c)$, we get

$$
\operatorname{det}(A)=-1 .(1.1-0.1)=-1
$$

3. [5 marks] Let

$$
B=\left[\begin{array}{llll}
1 & 4 & 5 & 3 \\
0 & 2 & 3 & 3 \\
0 & 0 & 3 & 7 \\
0 & 0 & 0 & 4
\end{array}\right]
$$

Notice that B is upper-triangular (i.e. all elements below the diagonal are zero). Use the cofactor expansion of determinants to show (on this example) that the $\operatorname{det}(B)$ is simply the product of the diagonal elements of B.

Solution: If we always use the first column for expansion, we get

$$
\operatorname{det}(B)=b_{11} C_{11}+b_{21} C_{21}+b_{31} C_{31}+b_{41} C_{41}=b_{11} C_{11}=b_{11}(-1)^{1+1} \operatorname{det}(B(1,1))
$$

Let $B^{\prime}=B(1,1)$. Notice that B^{\prime} is upper-triangular as well, so

$$
\operatorname{det}\left(B^{\prime}\right)=\operatorname{det}\left(\left[\begin{array}{ccc}
2 & 3 & 3 \\
0 & 3 & 7 \\
0 & 0 & 4
\end{array}\right]\right)=b_{11}^{\prime} C_{11}^{\prime}+b_{21}^{\prime} C_{21}^{\prime}+b_{31}^{\prime} C_{31}^{\prime}=b_{11}^{\prime} C_{11}^{\prime}=b_{22}(-1)^{1+1} \operatorname{det}\left(B^{\prime}(1,1)\right)
$$

Finally, let $B^{\prime \prime}=B^{\prime}(1,1)$. Again, $B^{\prime \prime}$ is upper-triangular, so

$$
\operatorname{det}\left(B^{\prime \prime}\right)=\operatorname{det}\left(\left[\begin{array}{ll}
3 & 7 \\
0 & 4
\end{array}\right]\right)=b_{11}^{\prime \prime} b_{22}^{\prime \prime}-0 . b_{12}^{\prime \prime}=b_{33} b_{44}
$$

Collecting all our result, we see that

$$
\operatorname{det}(B)=b_{11} b_{22} b_{33} b_{44}=1.2 .3 .4=24
$$

4. For each of the following statements, either prove that it is true, or find a counterexample to prove that it is false.
(a) [3 marks] If A and B are $n \times n$ invertible matrices, then $A+B$ is also invertible.

Solution: Take, for example

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

The determinants of those matrices are both not zero $(\operatorname{det}(A)=1$, $\operatorname{det}(B)=-1)$, so they are invertible.

But

$$
A+B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

is not invertible because $\operatorname{det}(A+B)=0$.
(b) [3 marks] If A and B are $n \times n$ invertible matrices and $(A B)^{2}=A^{2} B^{2}$, then $A B=B A$.

Solution: First, we note that $(A B)^{2}=(A B)(A B)=A B A B$, and $A^{2} B^{2}=A A B B$, so we know that

$$
A B A B=A A B B
$$

Since A and B are invertible, they have inverses A^{-1} and B^{-1}. If we premultiply both side of the above equation by A^{-1}, we obtain

$$
A^{-1} A B A B=A^{-1} A A B B
$$

i.e.

$$
B A B=A B B
$$

Now, we postmultiply both sides by B^{-1} and get

$$
B A B B^{-1}=A B B B^{-1}
$$

i.e.

$$
B A=A B
$$

