Math 115 Spring 2015: Assignment 5

Solutions

1. (a) [2 marks] Find a matrix $A \in \mathbb{R}^{2 \times 2}$ such that $\vec{y}=A \vec{x}$, where \vec{y} is \vec{x} rotated by an angle of $\frac{2}{3} \pi$ (counterclockwise around the origin), for any $\vec{x} \in \mathbb{R}^{2}$.
(b) [2 marks] Find a matrix $B \in \mathbb{R}^{2 \times 2}$ such that $\vec{z}=B \vec{y}$, where z_{1} is y_{1} scaled by a factor 3 and z_{2} is y_{2} scaled by a factor 2 , for any $\vec{y} \in \mathbb{R}^{2}$.
(c) [2 marks] Find a matrix $C \in \mathbb{R}^{2 \times 2}$ such that $\vec{w}=C \vec{z}$, where \vec{w} is \vec{z} rotated by an angle of $\frac{-2}{3} \pi$ (counterclockwise around the origin, i.e. $\frac{2}{3} \pi$ clockwise), for any $\vec{z} \in \mathbb{R}^{2}$.
(d) [2 marks] Find a matrix $G \in \mathbb{R}^{2 \times 2}$ such that $\vec{w}=G \vec{x}$, where \vec{w} is \vec{x} that is rotated by $\frac{2}{3} \pi$ and then scaled with factors 3 and 2 , and then rotated by $\frac{-2}{3} \pi$. Note that this amounts to performing on \vec{x} all three transformations found in points (a), (b) and (c), successively.

Solution:

$$
\begin{aligned}
A & =\left[\begin{array}{cc}
\cos \left(\frac{2}{3} \pi\right) & -\sin \left(\frac{2}{3} \pi\right) \\
\sin \left(\frac{2}{3} \pi\right) & \cos \left(\frac{2}{3} \pi\right)
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right] \\
B & =\left[\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right] \\
C & =\left[\begin{array}{cc}
\cos \left(-\frac{2}{3} \pi\right) & -\sin \left(-\frac{2}{3} \pi\right) \\
\sin \left(-\frac{2}{3} \pi\right) & \cos \left(-\frac{2}{3} \pi\right)
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right] \\
G & =C \cdot B \cdot A=\left[\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right] \cdot\left[\begin{array}{cc}
3 & 0 \\
0 & 2
\end{array}\right] \cdot\left[\begin{array}{cc}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right] \cdot\left[\begin{array}{cc}
-\frac{3}{2} & -3 \frac{\sqrt{3}}{2} \\
\sqrt{3} & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{9}{4} & \frac{\sqrt{3}}{4} \\
\frac{\sqrt{3}}{4} & \frac{11}{4}
\end{array}\right]
\end{aligned}
$$

2. [3 marks] Find a matrix $A \in \mathbb{R}^{2 \times 2}$ that has no zero elements, such that $\vec{x}=A^{k} \vec{x}$. Note that $A^{k}=A \cdot A \cdots A$ where there are k factors A. For example $A^{3}=A \cdot A \cdot A$. Hint: Think about a geometric transformation that, when applied k times on the vector \vec{x}, gives back the vector \vec{x} itself. k may appear in some form in the matrix.

Solution: Applying k rotations of $\frac{2 \pi}{k}$ radians on a vector yields the same vector. So A is given by

$$
A=\left[\begin{array}{cc}
\cos \left(\frac{2 \pi}{k}\right) & -\sin \left(\frac{2 \pi}{k}\right) \\
\sin \left(\frac{2 \pi}{k}\right) & \cos \left(\frac{2 \pi}{k}\right)
\end{array}\right] .
$$

This matrix has no zero elements for $k \geq 3$.
Bonus points: For $k=2$,

$$
A=\left[\begin{array}{cc}
\cos (\pi) & -\sin (\pi) \\
\sin (\pi) & \cos (\pi)
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

which has zero elements. But in this case, we only need $A^{2}=A A=I$. Let

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

then

$$
A A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
a^{2}+b c & a b+b d \\
c a+d c & c b+d^{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

In other words, we have the four equations

$$
\left\{\begin{array}{l}
a^{2}+b c=1 \\
a b+b d=0 \\
c a+d c=0 \\
c b+d^{2}=1
\end{array}\right.
$$

The last equation gives $b c=1-d^{2}$. Using that in the first equation gives $a^{2}+1-d^{2}=1$ so $a^{2}=d^{2}$, i.e. $|a|=|d|$. The second equation is $b(a+d)=0$ and the third is $c(a+d)=0$. We want $a, b, c, d \neq 0$ so we need $a=-d$ and $b c=1-a^{2}$. For example, we can choose $a=2, b=-1, c=3$ and $d=-2$:

$$
A=\left[\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right]
$$

3. The matrix $A \in \mathbb{R}^{4 \times 7}$ and its reduced row echelon form B are given as follows:

$$
A=\left[\begin{array}{ccccccc}
1 & -3 & 0 & 1 & 4 & 1 & -5 \\
0 & 0 & -1 & 5 & -9 & -1 & 4 \\
3 & -9 & -1 & 8 & 3 & 1 & -5 \\
-1 & 3 & 1 & -6 & 5 & -1 & 7
\end{array}\right], \quad B=\left[\begin{array}{ccccccc}
1 & -3 & 0 & 1 & 4 & 0 & 1 \\
0 & 0 & 1 & -5 & 9 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 & 1 & -6 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) [2 marks] Determine a basis for the columnspace of A.

Solution: One basis of $\operatorname{col}(A)$ is given by the columns of A that correspond to columns of B having a leading one. Therefore,

$$
\left\{\left[\begin{array}{c}
1 \\
0 \\
3 \\
-1
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right]\right\}
$$

is a basis of $\operatorname{col}(A)$.
(b) [2 marks] Determine a basis for the rowspace of A.

Solution: One basis of $\operatorname{row}(A)$ is given by the nonzero rows of B. Therefore,

$$
\left\{\left[\begin{array}{c}
1 \\
-3 \\
0 \\
1 \\
4 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
1 \\
-5 \\
9 \\
0 \\
2
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
-6
\end{array}\right]\right\}
$$

is a basis of $\operatorname{row}(A)$.
(c) [5 marks] The set $S=\left\{x \in \mathbb{R}^{7} \mid A \vec{x}=\overrightarrow{0}\right\}$ is the set of all solutions to the system $A \vec{x}=\overrightarrow{0}$. This set S is a subspace. Determine a basis for S. Hint: Find the general solution to $A \vec{x}=\overrightarrow{0}$, and write it as a vector equation.
Solution: We write the RREF of the system $A \vec{x}=\overrightarrow{0}$. Because the right-hand side is zero in the system, it will be zero in its RREF too. The other coefficients in the RREF will simply be the coefficients in the RREF of A :

$$
\left[\begin{array}{ccccccc|c}
1 & -3 & 0 & 1 & 4 & 0 & 1 & 0 \\
0 & 0 & 1 & -5 & 9 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -6 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The general solution to this system is

$$
\left\{\begin{array}{rlrrr}
x_{1} & = & 3 x_{2} & -1 x_{4} & -4 x_{5}
\end{array}-\frac{-1 x_{7}}{} \begin{array}{rlrr}
x_{3}= & 5 x_{4} & -9 x_{5} & -2 x_{7} \\
x_{6}= & & & 6 x_{7}
\end{array}\right.
$$

where $x_{2}, x_{4}, x_{5}, x_{7}$ are free variables. As a vector equation, we can write this subspace as

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right]=\left[\begin{array}{l}
3 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] q+\left[\begin{array}{c}
-1 \\
0 \\
5 \\
1 \\
0 \\
0 \\
0
\end{array}\right] r+\left[\begin{array}{c}
-4 \\
0 \\
-9 \\
0 \\
1 \\
0 \\
0
\end{array}\right] s+\left[\begin{array}{c}
-1 \\
0 \\
-2 \\
0 \\
0 \\
6 \\
1
\end{array}\right] t, \quad \text { for all } q, r, s, t \in \mathbb{R}
$$

It is easy to verify that the only solution for $\vec{x}=0$ is $q=r=s=t=0$, so the four vectors above are
linearly independent. Therefore,

$$
\left\{\left[\begin{array}{l}
3 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
5 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-4 \\
0 \\
-9 \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
-2 \\
0 \\
0 \\
6 \\
1
\end{array}\right]\right\}
$$

is a basis of S.

