Math 115 Spring 2015: Assignment 4

Solutions

1. [5 marks] Let $A=\left[\begin{array}{rr}1 & 0 \\ 0 & -1 \\ 2 & 1\end{array}\right]$. Compute $A A^{T}$ and $A^{T} A$.

Solution:

$$
\begin{gathered}
A A^{T}=\left[\begin{array}{rr}
1 & 0 \\
0 & -1 \\
2 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 2 \\
0 & -1 & 1
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 2 \\
0 & 1 & -1 \\
2 & -1 & 5
\end{array}\right] \\
A^{T} A=\left[\begin{array}{rrr}
1 & 0 & 2 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
0 & -1 \\
2 & 1
\end{array}\right]=\left[\begin{array}{ll}
5 & 2 \\
2 & 2
\end{array}\right]
\end{gathered}
$$

2. [5 marks] Given scalars $t_{1}, t_{2} \in \mathbb{R}$, find a matrix $A \in \mathbb{R}^{3 \times 3}$ such that $A \cdot\left[\begin{array}{c}x_{1} \\ x_{2} \\ 1\end{array}\right]=\left[\begin{array}{c}\left(x_{1}+t_{1}\right) \\ \left(x_{2}+t_{2}\right) \\ 1\end{array}\right]$, for all $x_{1}, x_{2} \in \mathbb{R}$. Note: The matrix must be the same for all values of x_{1} and x_{2}, but the scalars t_{1} and t_{2} are constant, so they may appear in A. Hint: Expand the product $A \vec{x}$ in function of the scalar elements of A and \vec{x}.
Solution: Let

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]
$$

Then,

$$
A \cdot \vec{x}=\left[\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
x_{2} \\
1
\end{array}\right]=\left[\begin{array}{c}
a x_{1}+b x_{2}+c \\
d x_{1}+e x_{2}+f \\
g x_{1}+h x_{2}+i
\end{array}\right], \text { which we want equal to }\left[\begin{array}{c}
x_{1}+t_{1} \\
x_{2}+t_{2} \\
1
\end{array}\right] .
$$

In the first row, $a x_{1}+b x_{2}+c=x_{1}+t_{1}$ can be obtained easily by setting $a=1, b=0$ and $c=t_{1}$. Similarly we obtain $d=0, e=1$ and $f=t_{2}$. And finally $g=0, h=0$ and $i=1$. We verify that

$$
\text { if } A=\left[\begin{array}{ccc}
1 & 0 & t_{1} \\
0 & 1 & t_{2} \\
0 & 0 & 1
\end{array}\right] \text {, then }\left[\begin{array}{ccc}
1 & 0 & t_{1} \\
0 & 1 & t_{2} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
x_{2} \\
1
\end{array}\right]=\left[\begin{array}{c}
\left(x_{1}+t_{1}\right) \\
\left(x_{2}+t_{2}\right) \\
1
\end{array}\right]
$$

3. [5 marks] Given a vector $\vec{v} \in \mathbb{R}^{2}$, find a matrix $A \in \mathbb{R}^{2 \times 2}$ such that $A \cdot \vec{x}=\operatorname{proj}_{\vec{v}} \vec{x}$, for all $x \in \mathbb{R}^{2}$. Note: The matrix must be the same for all \vec{x}, but \vec{v} is constant, so v_{1} and v_{2} may appear in A. Hint: Expand $\operatorname{proj}_{\vec{v}} \vec{x}$ and the product $A \vec{x}$.
Solution: We proceed as in the previous question, letting

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Here however, we want to obtain the vector $\operatorname{proj}_{\vec{v}} \vec{x}$, i.e.

$$
\frac{\vec{v} \cdot \vec{x}}{\|\vec{v}\|^{2}} \vec{v}=\frac{v_{1} x_{1}+v_{2} x_{2}}{\left(\sqrt{v_{1}^{2}+v_{2}^{2}}\right)^{2}}\left[\begin{array}{c}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{v_{1} x_{1}+v_{2} x_{2}}{v_{1}^{2}+v_{2}^{2}} v_{1} \\
\frac{v_{1} x_{1}+v_{2} x_{2}}{v_{1}^{2}+v_{2}^{2}} v_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{v_{1}^{2} x_{1}+v_{1} v_{2} x_{2}}{v_{1}^{2}+v_{2}^{2}} \\
\frac{v_{1} v_{2} x_{1}+v_{2}^{2} x_{2}}{v_{1}^{2}+v_{2}^{2}}
\end{array}\right]=\left[\begin{array}{c}
\frac{v_{1}^{2}}{v_{1}^{2}+v_{2}^{2}} x_{1}+\frac{v_{1} v_{2}}{v_{1}^{2}+v_{2}^{2}} x_{2} \\
\frac{v_{1} v_{2}}{v_{1}^{2}+v_{2}^{2}} x_{1}+\frac{v_{2}^{2}}{v_{1}^{2}+v_{2}^{2}} x_{2}
\end{array}\right]
$$

Again,

$$
A \cdot \vec{x}=\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
a x_{1}+b x_{2} \\
c x_{1}+d x_{2}
\end{array}\right], \text { which we want equal to }\left[\begin{array}{c}
\frac{v_{1}^{2}}{v_{1}^{2}+v_{2}^{2}} x_{1}+\frac{v_{1} v_{2}}{v_{1}^{2}+v_{2}^{2}} x_{2} \\
\frac{v_{1} v_{2}}{v_{1}^{2}+v_{2}^{2}} x_{1}+\frac{v_{2}^{2}}{v_{1}^{2}+v_{2}^{2}} x_{2}
\end{array}\right]
$$

The matrix we are looking for is thus

$$
A=\left[\begin{array}{cc}
\frac{v_{1}^{2}}{v_{1}^{2}+v_{2}^{2}} & \frac{v_{1} v_{2}}{v_{1}^{2}+v_{2}^{2}} \\
\frac{v_{1} v_{2}}{v_{1}^{2}+v_{2}^{2}} & \frac{v_{2}^{2}}{v_{1}^{2}+v_{2}^{2}}
\end{array}\right]
$$

4. [5 marks] A matrix B is symmetric if $(B)_{i j}=(B)_{j i}$ for all i and j. Show that, for any matrix $A \in \mathbb{R}^{m \times n}$, the product $\left(A^{T} A\right)$ is (a) defined, (b) a square matrix, and (c) a symmetric matrix.

Solution:

(a) The product of $B \in \mathbb{R}^{a \times b}$ and $C \in \mathbb{R}^{c \times d}$ is defined if $b=c$. In our case, the first matrix is $A^{T} \in \mathbb{R}^{n \times m}$ because it is the transpose of A. The second matrix is $A \in \mathbb{R}^{m \times n}$. The first matrix has m columns and the second has m rows, so the product is defined.
(b) The product has as many rows as A^{T}, i.e. n, and as many columns as A, i.e. n. So it has n rows and columns, i.e. it is square.
(c) By the definition of the product of two matrices,

$$
\begin{aligned}
\left(A^{T} A\right)_{i j} & =\left(A^{T}\right)_{i 1} A_{1 j}+\left(A^{T}\right)_{i 2} A_{2 j}+\cdots+\left(A^{T}\right)_{i m} A_{m j} \\
& =A_{1 i} A_{1 j}+A_{2 i} A_{2 j}+\cdots+A_{m i} A_{m j}
\end{aligned}
$$

On the other hand, using the same definition, $\left(A^{T} A\right)_{j i}$ is given by

$$
\begin{aligned}
\left(A^{T} A\right)_{j i} & =\left(A^{T}\right)_{j 1} A_{1 i}+\left(A^{T}\right)_{j 2} A_{2 i}+\cdots+\left(A^{T}\right)_{j m} A_{m i} \\
& =A_{1 j} A_{1 i}+A_{2 j} A_{2 i}+\cdots+A_{m j} A_{m i} \\
& =A_{1 i} A_{1 j}+A_{2 i} A_{2 j}+\cdots+A_{m i} A_{m j}
\end{aligned}
$$

showing that $\left(A^{T} A\right)_{i j}=\left(A^{T} A\right)_{j i}$.

