Math 115 Spring 2015: Assignment 3

Solutions

1. Consider the following system of linear equations

$$
\begin{array}{r}
2 x_{3}+1 x_{4}-3 x_{5}=2 \\
x_{1}+3 x_{2}-x_{3} \text { } \\
2 x_{1}+x_{2}-x_{3}-x_{4}+2 x_{5}= \\
=1 .
\end{array}
$$

(a) [2 marks] Write the augmented matrix for this system of linear equations.

Solution:

$$
\left[\begin{array}{ccccc|c}
0 & 0 & 2 & 1 & -3 & 2 \\
1 & 3 & -1 & 0 & 4 & 2 \\
2 & 1 & -1 & -1 & 2 & -1
\end{array}\right]
$$

(b) [8 marks] Solve this system using elementary row operations (indicate which operations you are using). Write down the set of all solutions to this system.

Solution:

$$
\begin{aligned}
& {\left[\begin{array}{ccccc|c}
1 & 3 & -1 & 0 & 4 & 2 \\
0 & -5 & 1 & -1 & -6 & -5 \\
0 & 0 & 2 & 1 & -3 & 2
\end{array}\right] \begin{array}{l}
R 1^{\prime} \leftarrow R 2 \\
R 2^{\prime} \leftarrow R 3-2 . R 2 \\
R 3^{\prime} \leftarrow R 1
\end{array} } \\
& \sim\left[\begin{array}{ccccc|c}
1 & 0 & \frac{3}{5} & -\frac{1}{10} & -\frac{11}{10} & 0 \\
0 & 1 & -\frac{1}{5} & \frac{1}{5} & \frac{6}{5} & 1 \\
0 & 0 & 1 & \frac{1}{2} & -\frac{3}{2} & 1
\end{array}\right] \begin{array}{l}
R 1^{\prime \prime} \leftarrow R 1^{\prime}+\frac{3}{5} R 2^{\prime}+\frac{1}{2} R 3^{\prime} \\
R 2^{\prime \prime} \leftarrow-\frac{1}{5} R 2^{\prime} \\
R 3^{\prime \prime} \leftarrow \frac{1}{2} R 3^{\prime}
\end{array} \\
& \sim\left[\begin{array}{ccccc|c}
1 & 0 & 0 & -\frac{2}{5} & -\frac{1}{5} & -\frac{3}{5} \\
0 & 1 & 0 & \frac{3}{10} & \frac{9}{10} & \frac{6}{5} \\
0 & 0 & 1 & \frac{1}{2} & -\frac{3}{2} & 1
\end{array}\right] \begin{array}{l}
R 1^{\prime \prime \prime} \leftarrow R 1^{\prime \prime}-\frac{3}{5} R 3^{\prime \prime} \\
R 2^{\prime \prime \prime} \leftarrow R 2^{\prime \prime}+\frac{1}{5} R 3^{\prime \prime} \\
R 3^{\prime \prime \prime} \leftarrow R 3^{\prime \prime}
\end{array}
\end{aligned}
$$

The general solution is

$$
\left\{\begin{array}{l}
x_{1}=-\frac{3}{5}+\frac{2}{5} s+\frac{1}{5} t \\
x_{2}=\frac{6}{5}-\frac{3}{10} s-\frac{9}{10} t \\
x_{3}=1-\frac{1}{2} s+\frac{3}{2} t \quad, \text { for all } s, t \in \mathbb{R} \\
x_{4}=s \\
x_{5}=t
\end{array}\right.
$$

2. Consider the system of linear equations with the following augmented matrix:

$$
\left[\begin{array}{ccc|c}
3 & q^{2} & -p & 1 \\
0 & q & 0 & p \\
0 & 0 & p & p q
\end{array}\right]
$$

(a) [3 marks] Determine the values that p and q must take for this system to be consistent with exactly one solution.
Solution: To have a solution, we need to have no row of the form $[0 \cdots 0 \mid b]$ where $b \neq 0$. The first row cannot be such a row (because of the leading 3). The second would need $q=0$ and $p \neq 0$ to be
inconsistent. The third is $[0 \cdots 0 \mid 0]$ if $p=0$, so it is always consistent. Thus, the system is consistent if $q \neq 0$ or $p=0$.

If it is consistent, then the solution is unique if it has three pivots. This happens if $q \neq 0$ and $p \neq 0$.
In summary, we need $p \neq 0$ and $q \neq 0$.
(b) [3 marks] If it has exactly one solution $\left(x_{1}, x_{2}, x_{3}\right)$, then give x_{1}, x_{2} and x_{3} in function of p and q.

Solution:

$x_{3}=p q / p=q$,
$x_{2}=p / q$,
$x_{1}=1 / 3 .\left(1-q^{2} x_{2}+p x_{3}\right)=1 / 3 \cdot\left(1-q^{2} p / q+p q\right)=1 / 3$
The solution is thus $(q, p / q, 1 / 3)$.
(c) [2 marks] Determine the values that p and q must take for this system to be inconsistent.

Solution: As noted in (a), only the second row can take the form $[0 \cdots 0 \mid b]$ where $b \neq 0$. For that to happen, we need $q=0$ and $p \neq 0$.
(d) [2 marks] Determine the values that p and q must take for this system to be consistent with infinitely many solutions.
Solution: As in (a), for the system to be consistent we need either $q \neq 0$ or $p=0$. To have infinitely many solutions, we need a row of the form $[0 \cdots 0 \mid 0]$. This occurs in the second row if $q=p=0$ or in the third if $p=0$. So it happens whenever $p=0$ (and then, the system is indeed consistent).

