Math 115 Spring 2015: Assignment 2

Solutions

1. Determine whether or not the following sets are subspaces in their respective vector spaces. If so, prove it using the definition of subspaces. If not, provide a counterexample where a rule of subspaces is violated.

 (a) [2 marks] \(S = \{ \vec{x} \in \mathbb{R}^2 \mid x_1 + 2x_2 = 0 \text{ and } x_1 - 3x_2 = 1 \} \).

 Solution: \(S \) is not a subspace. For example, \(\begin{bmatrix} 2 \\ 5 \\ -1 \\ 5 \end{bmatrix} \in S \), but \(\vec{0} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix} \). \(\vec{0} \) is the only vector that satisfies both equations of \(S \), i.e. \(S = \left\{ \begin{bmatrix} 2 \\ 5 \\ -1 \\ 5 \end{bmatrix} \right\} \).

 (b) [2 marks] \(T = \{ \vec{x} \in \mathbb{R}^3 \mid \vec{x} \cdot \vec{v} \geq 0 \}, \) where \(\vec{v} = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix} \).

 Solution: \(T \) is not a subspace. Let \(\vec{x} = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix} \). The product \(\vec{x} \cdot \vec{v} = 2.2 + 2.2 + (-1)(-1) = 9 \geq 0 \) so \(\vec{x} \in T \). However, \(((-1)\vec{x}) \cdot \vec{v} = (-2).2 + (-2).2 + (1)(-1) = -9 \nless 0 \), so \((-1)\vec{x} \notin T \). Therefore, the set is not closed under scalar multiplication.

2. Let \(\vec{u} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} \), \(\vec{v} = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} \), \(\vec{w} = \begin{bmatrix} -3 \\ -2 \\ -3 \end{bmatrix} \), and \(\vec{x} = \begin{bmatrix} 0 \\ 2 \\ -3 \end{bmatrix} \).

 (a) [3 marks] Show that \(\{ \vec{u}, \vec{v}, \vec{w}, \vec{x} \} \) is linearly dependent.

 Solution: We solve the system \(p\vec{u} + q\vec{v} + r\vec{w} + s\vec{x} = \vec{0} \), i.e.

 \[
 \begin{align*}
 p + 2q - 3r &= 0 \\
 2p + 2q - 2r + 2s &= 0 \\
 -p + q - 3r - 3s &= 0
 \end{align*}
 \Rightarrow
 \begin{align*}
 p &= -2q + 3r \\
 2p + 2q - 2r + 2s &= 0 \\
 2q - 3r + q - 3r - 3s &= 0
 \end{align*}
 \Rightarrow
 \begin{align*}
 p &= -2q + 3r \\
 2q - 3r + q - 3r - 3s &= 0 \\
 3q - 6r - 3s &= 0
 \end{align*}
 \Rightarrow
 \begin{align*}
 p &= -2q + 3r \\
 s &= q - 2r \\
 3q - 6r - 3s &= 0
 \end{align*}
 \Rightarrow
 \begin{align*}
 p &= -2q + 3r \\
 s &= q - 2r \\
 3q - 6r - 3s &= 0
 \end{align*}
 \Rightarrow
 \begin{align*}
 p &= -2q + 3r \\
 s &= q - 2r \\
 3q - 6r - 3s &= 0
 \end{align*}
 \Rightarrow
 \begin{align*}
 p &= -2q + 3r \\
 s &= q - 2r \\
 3q - 6r - 3s &= 0
 \end{align*}
 \Rightarrow
 \begin{align*}
 p &= -2q + 3r \\
 s &= q - 2r \\
 3q - 6r - 3s &= 0
 \end{align*}
 \Rightarrow
 \begin{align*}
 p &= -2q + 3r \\
 s &= q - 2r \\
 3q - 6r - 3s &= 0
 \end{align*}
 \Rightarrow
 \begin{align*}
 p &= -2q + 3r \\
 s &= q - 2r \\
 3q - 6r - 3s &= 0
 \end{align*}
 \Rightarrow
 \begin{align*}
 p &= -2q + 3r \\
 s &= q - 2r \\
 3q - 6r - 3s &= 0
 \end{align*}

 If we pick any value for \(q \) and \(r \), and then compute \(p \) and \(s \) according to the above equation, we obtain a solution to the system. Note that we do not pick \(q = r = 0 \), because then \(p = s = 0 \), which does not provide the “not all zero” solution necessary to prove linear dependence.

 For example, we can choose \(q = 0, r = -1 \), yielding \(p = -3, s = 2 \), and verify that

 \[-3\vec{u} - \vec{w} + 2\vec{x} = \vec{0}.\]
3. For each of the following statements, either prove that it is true, or find a counterexample to prove that it is false.

(b) [4 marks] Find a basis for \(\text{span}\{\vec{u}, \vec{v}, \vec{w}\} \), i.e. a set of vectors \(\{\vec{v}_1, \ldots, \vec{v}_k\} \) such that (a) \(\{\vec{v}_1, \ldots, \vec{v}_k\} \) is linearly independent, and (b) \(\text{span}\{\vec{v}_1, \ldots, \vec{v}_k\} = \text{span}\{\vec{u}, \vec{v}, \vec{x}\} \). (Note: \(k \) will be smaller than 4, so it could be 1, 2 or 3.)

Solution: We proved above that \(-3\vec{u} - \vec{w} + 2\vec{x} = 0\). Therefore \(\vec{w} = -3\vec{u} + 0\vec{v} + 2\vec{x}\), thus \(\vec{w} \in \text{span}\{\vec{u}, \vec{v}, \vec{x}\}\), so \(\text{span}\{\vec{u}, \vec{v}, \vec{x}\} = \text{span}\{\vec{u}, \vec{v}, \vec{w}\}\). Let us check that \(\{\vec{u}, \vec{v}\}\) is linearly independent by solving the system

\[
\begin{align*}
 p + 2q &= 0 \\
 2p + 2q + 2s &= 0 \\
 -p + q - 3s &= 0
\end{align*}
\]

Again, for any value of \(q \), we find a solution to the system. In particular, if \(q = -1 \), then \(s = -1, p = 2 \), showing that \(2\vec{u} - \vec{v} - \vec{x} = 0\), i.e. the system is linearly dependent. Rearranging the previous equation, we see that \(\vec{x} = 2\vec{u} - \vec{v}\), so \(\vec{x} \in \text{span}\{\vec{u}, \vec{v}\}\), implying that \(\text{span}\{\vec{u}, \vec{v}\} = \text{span}\{\vec{u}, \vec{v}, \vec{x}\}\).

Let us now check that \(\{\vec{u}, \vec{v}\}\) is linearly independent. The system

\[
\begin{align*}
 p + 2q &= 0 \\
 2p + 2q &= 0 \\
 -p + q &= 0
\end{align*}
\]

has a solution only if \(-2q = q\). This happens only if \(p = q = 0\). Therefore, \(\{\vec{u}, \vec{v}\}\) is linearly independent.

To summarize, we showed that so \(\text{span}\{\vec{u}, \vec{v}\} = \text{span}\{\vec{u}, \vec{v}, \vec{w}\}\) and \(\{\vec{u}, \vec{v}\}\) is linearly independent. Thus, \(\{\vec{u}, \vec{v}\}\) is a basis of \(\text{span}\{\vec{u}, \vec{v}, \vec{w}, \vec{x}\}\).

3. For each of the following statements, either prove that it is true, or find a counterexample to prove that it is false.

(a) [3 marks] Let \(\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n\). If \(\{\vec{u}, \vec{v}, \vec{w}\}\) is linearly dependent, then \(\vec{u} \in \text{span}\{\vec{v}, \vec{w}\}\).

Solution: False. For example, take \(\vec{u} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}\), \(\vec{v} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}\) and \(\vec{w} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}\). Clearly, \(0\vec{u} + \vec{v} - \frac{1}{2}\vec{w} = 0\), so they are linearly dependent. But \(\vec{u} \notin \text{span}\{\vec{v}, \vec{w}\}\).

Note: If \(\{\vec{u}, \vec{v}, \vec{w}\}\) are linearly dependent, then we know that \(at least one\) of the following statements is true:

1. \(\vec{u} \in \text{span}\{\vec{v}, \vec{w}\}\).
2. \(\vec{v} \in \text{span}\{\vec{u}, \vec{w}\}\).
3. \(\vec{w} \in \text{span}\{\vec{u}, \vec{v}\}\).

However, they are not necessarily \(all\) true. In the above example, (2) and (3) hold true, but (1) does not.

As a consequence, \(\text{span}\{\vec{u}, \vec{v}\} = \text{span}\{\vec{u}, \vec{w}\} = \text{span}\{\vec{v}, \vec{w}\}\), but \(\text{span}\{\vec{v}, \vec{w}\} \neq \text{span}\{\vec{u}, \vec{v}, \vec{w}\}\). Indeed \(\text{span}\{\vec{v}, \vec{w}\}\) is the line \(\vec{x} \in \mathbb{R}^2 \mid \vec{x} = t \begin{bmatrix} 0 \\ 1 \end{bmatrix}\), while \(\text{span}\{\vec{u}, \vec{v}, \vec{w}\}\) is the entire plane \(\mathbb{R}^2\).

(b) [3 marks] Let \(\vec{u}, \vec{v} \in \mathbb{R}^n\) be two nonzero vectors (i.e. \(\vec{u} \neq \vec{0}\) and \(\vec{v} \neq \vec{0}\)). If \(\vec{u}\) and \(\vec{v}\) are orthogonal, then \(\{\vec{u}, \vec{v}\}\) is linearly independent.
Solution: True. We prove that if $\vec{u} \neq \vec{0}$ and $\vec{v} \neq \vec{0}$ were such that $\{\vec{u}, \vec{v}\}$ is linearly dependent, then \vec{u} and \vec{v} could not be orthogonal.

Assume $\{\vec{u}, \vec{v}\}$ is linearly dependent. Then, there exist s, t not both zero such that $s\vec{u} + t\vec{v} = \vec{0}$. Furthermore, we know that both $s \neq 0$ and $t \neq 0$. Indeed, if $s = 0$ and $t \neq 0$, then $t\vec{v} = \vec{0}$ which contradicts $\vec{v} \neq \vec{0}$, and if $s \neq 0$ and $t = 0$, then $s\vec{u} = \vec{0}$ which contradicts $\vec{u} \neq \vec{0}$. Therefore, we can write $\vec{u} = -\frac{t}{s}\vec{v}$. So the product $\vec{u}.\vec{v} = -\frac{t}{s}\vec{v}.\vec{v} = -\frac{t}{s}|\vec{v}|^2 \neq 0$, showing that the vectors are not orthogonal.

(c) [3 marks] Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ be three nonzero vectors. If (a) \vec{u} is orthogonal to \vec{v}, and (b) \vec{u} is orthogonal to \vec{w}, then $\{\vec{u}, \vec{v}, \vec{w}\}$ is linearly independent.

Solution: False. Take any \vec{u} orthogonal to \vec{v} and $\vec{w} = \vec{v}$. Then \vec{u} is also orthogonal to \vec{w}, but $\{\vec{u}, \vec{v}, \vec{w}\}$ is linearly dependent.

For example, let $\vec{u} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\vec{v} = \vec{w} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Then $\vec{u}.\vec{v} = \vec{u}.\vec{w} = 0$, but $0 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} - 1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, so $\{\vec{u}, \vec{v}, \vec{w}\}$ is linearly dependent.