Math 115 Spring 2015: Assignment 2

Solutions

1. Determine whether or not the following sets are subspaces in their respective vector spaces. If so, prove it using the definition of subspaces. If not, provide a counterexample where a rule of subspaces is violated.
(a) [2 marks] $S=\left\{\vec{x} \in \mathbb{R}^{2} \mid x_{1}+2 x_{2}=0\right.$ and $\left.x_{1}-3 x_{2}=1\right\}$.

Solution: S is not a subspace. For example, $\left[\begin{array}{c}\frac{2}{5} \\ -\frac{1}{5}\end{array}\right] \in S$, but $0 .\left[\begin{array}{c}\frac{2}{5} \\ -\frac{1}{5}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \notin S$ because $0-3.0=0 \neq 1$. (Note that $\left[\begin{array}{c}\frac{2}{5} \\ -\frac{1}{5}\end{array}\right]$ is the only vector that satisfies both equations of S, i.e. $S=$ $\left.\left\{\left[\begin{array}{c}\frac{2}{5} \\ -\frac{1}{5}\end{array}\right]\right\}\right)$.
(b) [2 marks] $T=\left\{\vec{x} \in \mathbb{R}^{3} \mid \vec{x} \cdot \vec{v} \geq 0\right\}$, where $\vec{v}=\left[\begin{array}{c}2 \\ 2 \\ -1\end{array}\right]$.

Solution: T is not a subspace. Let $\vec{x}=\left[\begin{array}{c}2 \\ 2 \\ -1\end{array}\right]$. The product $\vec{x} \cdot \vec{v}=2 \cdot 2+2 \cdot 2+(-1) \cdot(-1)=9 \geq 0$ so $\vec{x} \in T$. However, $((-1) \cdot \vec{x}) \cdot \vec{v}=(-2) \cdot 2+(-2) \cdot 2+(1) \cdot(-1)=-9 \nsupseteq 0$, so $((-1) \cdot \vec{x}) \notin T$. Therefore, the set is not closed under scalar multiplication.
2. Let $\vec{u}=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right], \vec{v}=\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right], \vec{w}=\left[\begin{array}{c}-3 \\ -2 \\ -3\end{array}\right]$, and $\vec{x}=\left[\begin{array}{c}0 \\ 2 \\ -3\end{array}\right]$.
(a) [3 marks] Show that $\{\vec{u}, \vec{v}, \vec{w}, \vec{x}\}$ is linearly dependent.

Solution: We solve the system $p \vec{u}+q \vec{v}+r \vec{w}+s \vec{x}=\overrightarrow{0}$, i.e.

$$
\begin{gathered}
\left\{\begin{array} { l }
{ p + 2 q - 3 r = 0 } \\
{ 2 p + 2 q - 2 r + 2 s = 0 } \\
{ - p + q - 3 r - 3 s = 0 }
\end{array} \rightarrow \left\{\begin{array} { l }
{ p = - 2 q + 3 r } \\
{ - 4 q + 6 r + 2 q - 2 r + 2 s = 0 } \\
{ 2 q - 3 r + q - 3 r - 3 s = 0 }
\end{array} \rightarrow \left\{\begin{array}{l}
p=-2 q+3 r \\
-2 q+4 r+2 s=0 \\
3 q-6 r-3 s=0
\end{array}\right.\right.\right. \\
\rightarrow\left\{\begin{array} { l }
{ p = - 2 q + 3 r } \\
{ s = q - 2 r } \\
{ 3 q - 6 r - 3 q + 6 r = 0 }
\end{array} \rightarrow \left\{\begin{array}{l}
p=-2 q+3 r \\
s=q-2 r \\
0=0
\end{array}\right.\right.
\end{gathered}
$$

If we pick any value for q and r, and then compute p and s according to the above equation, we obtain a solution to the system. Note that we do not pick $q=r=0$, because then we also obtain $p=s=0$, which does not provide the "not all zero" solution necessary to prove linear dependence.
For example, we can choose $q=0, r=-1$, yielding $p=-3, s=2$, and verify that

$$
-3 \vec{u}-\vec{w}+2 \vec{x}=0
$$

Alternatively, one could notice e.g. that $\vec{w}=\vec{u}-2 \vec{v}$ (thus $\vec{w} \in \operatorname{span}\{\vec{u}, \vec{v}\}$), or that $\vec{x}=2 \vec{u}-\vec{v}$ (thus $\vec{x} \in \operatorname{span}\{\vec{u}, \vec{v}\})$. Then, the theorem from the course implies linear dependence.
(b) [4 marks] Find a basis for $\operatorname{span}\{\vec{u}, \vec{v}, \vec{w}, \vec{x}\}$, i.e. a set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ such that (a) $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is linearly independent, and (b) $\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}=\operatorname{span}\{\vec{u}, \vec{v}, \vec{w}, \vec{x}\}$. (Note: k will be smaller than 4 , so it could be 1,2 or 3 .)
Solution: We proved above that $-3 \vec{u}-\vec{w}+2 \vec{x}=0$. Therefore $\vec{w}=-3 \vec{u}+0 \vec{v}+2 \vec{x}$, thus $\vec{w} \in \operatorname{span}\{\vec{u}, \vec{v}, \vec{x}\}$, so $\operatorname{span}\{\vec{u}, \vec{v}, \vec{x}\}=\operatorname{span}\{\vec{u}, \vec{v}, \vec{w}, \vec{x}\}$. Let us check that $\{\vec{u}, \vec{v}, \vec{x}\}$ is linearly independent by solving the system $p \vec{u}+q \vec{v}+s \vec{x}=\overrightarrow{0}$, i.e.

$$
\left\{\begin{array} { l }
{ p + 2 q = 0 } \\
{ 2 p + 2 q + 2 s = 0 } \\
{ - p + q - 3 s = 0 }
\end{array} \rightarrow \left\{\begin{array} { l }
{ p = - 2 q } \\
{ - 4 q + 2 q + 2 s = 0 } \\
{ 2 q + q - 3 s = 0 }
\end{array} \rightarrow \left\{\begin{array}{l}
p=-2 q \\
s=q \\
0=0
\end{array}\right.\right.\right.
$$

Again, for any value of q, we find a solution to the system. In particular, if $q=-1$, then $s=-1, p=2$, showing that $2 \vec{u}-\vec{v}-\vec{x}=\overrightarrow{0}$, i.e. the system is linearly dependent. Rearranging the previous equation, we see that $\vec{x}=2 \vec{u}-\vec{v}$, so $\vec{x} \in \operatorname{span}\{\vec{u}, \vec{v}\}$, implying that $\operatorname{span}\{\vec{u}, \vec{v}\}=\operatorname{span}\{\vec{u}, \vec{v}, \vec{x}\}$.
Let us now check that $\{\vec{u}, \vec{v}\}$ is linearly independent. The system $p \vec{u}+q \vec{v}=\overrightarrow{0}$, i.e.

$$
\left\{\begin{array} { l }
{ p + 2 q = 0 } \\
{ 2 p + 2 q = 0 } \\
{ - p + q = 0 }
\end{array} \rightarrow \left\{\begin{array}{l}
p=-2 q \\
p=q \\
p=q
\end{array}\right.\right.
$$

has a solution only if $-2 q=q$. This happens only if $p=q=0$. Therefore, $\{\vec{u}, \vec{v}\}$ is linearly independent. To summarize, we showed that so span $\{\vec{u}, \vec{v}\}=\operatorname{span}\{\vec{u}, \vec{v}, \vec{w}, \vec{x}\}$ and $\{\vec{u}, \vec{v}\}$ is linearly independent. Thus, $\{\vec{u}, \vec{v}\}$ is a basis of $\operatorname{span}\{\vec{u}, \vec{v}, \vec{w}, \vec{x}\}$.
3. For each of the following statements, either prove that it is true, or find a counterexample to prove that it is false.
(a) [3 marks] Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^{n}$. If $\{\vec{u}, \vec{v}, \vec{w}\}$ is linearly dependent, then $\vec{u} \in \operatorname{span}\{\vec{v}, \vec{w}\}$.

Solution: False. For example, take $\vec{u}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \vec{v}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and $\vec{w}=\left[\begin{array}{l}0 \\ 2\end{array}\right]$. Clearly, $0 \vec{u}+\vec{v}-\frac{1}{2} \vec{w}=\overrightarrow{0}$, so they are linearly dependent. But $\vec{u} \notin \operatorname{span}\{\vec{v}, \vec{w}\}$.
Note: If $\{\vec{u}, \vec{v}, \vec{w}\}$ are linearly dependent, then we know that at least one of the following statements is true:
(1) $\vec{u} \in \operatorname{span}\{\vec{v}, \vec{w}\}$.
(2) $\vec{v} \in \operatorname{span}\{\vec{u}, \vec{w}\}$.
(3) $\vec{w} \in \operatorname{span}\{\vec{u}, \vec{v}\}$.

However, they are not necessarily all true. In the above example, (2) and (3) hold true, but (1) does not. As a consequence, $\operatorname{span}\{\vec{u}, \vec{v}\}=\operatorname{span}\{\vec{u}, \vec{w}\}=\operatorname{span}\{\vec{u}, \vec{v}, \vec{w}\}$, but $\operatorname{span}\{\vec{v}, \vec{w}\} \neq \operatorname{span}\{\vec{u}, \vec{v}, \vec{w}\}$. Indeed $\operatorname{span}\{\vec{v}, \vec{w}\}$ is the line $\left\{\vec{x} \in \mathbb{R}^{2} \left\lvert\, \vec{x}=t\left[\begin{array}{l}0 \\ 1\end{array}\right]\right., t \in \mathbb{R}\right\}$, while $\operatorname{span}\{\vec{u}, \vec{v}, \vec{w}\}$ is the entire plane \mathbb{R}^{2}.
(b) [3 marks] Let $\vec{u}, \vec{v} \in \mathbb{R}^{n}$ be two nonzero vectors (i.e. $\vec{u} \neq \overrightarrow{0}$ and $\vec{v} \neq \overrightarrow{0}$). If \vec{u} and \vec{v} are orthogonal, then $\{\vec{u}, \vec{v}\}$ is linearly independent.

Solution: True. We prove that if $\vec{u} \neq \overrightarrow{0}$ and $\vec{v} \neq \overrightarrow{0}$ were such that $\{\vec{u}, \vec{v}\}$ is linearly dependent, then \vec{u} and \vec{v} could not be orthogonal.
Assume $\{\vec{u}, \vec{v}\}$ is linearly dependent. Then, there exist s, t not both zero such that $s \vec{u}+t \vec{v}=\overrightarrow{0}$. Furthermore, we know that both $s \neq 0$ and $t \neq 0$. Indeed, if $s=0$ and $t \neq 0$, then $t \vec{v}=\overrightarrow{0}$ which contradicts $\vec{v} \neq \overrightarrow{0}$, and if $s \neq 0$ and $t=0$, then $s \vec{u}=\overrightarrow{0}$ which contradicts $\vec{u} \neq \overrightarrow{0}$. Therefore, we can write $\vec{u}=-\frac{t}{s} \vec{v}$. So the product $\vec{u} \cdot \vec{v}=-\frac{t}{s} \vec{v} \cdot \vec{v}=-\frac{t}{s}\|\vec{v}\|^{2} \neq 0$, showing that the vectors are not orthogonal.
(c) [3 marks] Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^{n}$ be three nonzero vectors. If (a) \vec{u} is orthogonal to \vec{v}, and (b) \vec{u} is orthogonal to \vec{w}, then $\{\vec{u}, \vec{v}, \vec{w}\}$ is linearly independent.

Solution: False. Take any \vec{u} orthogonal to \vec{v} and $\vec{w}=\vec{v}$. Then \vec{u} is also orthogonal to \vec{w}, but $\{\vec{u}, \vec{v}, \vec{w}\}$ is linearly dependent.
For example, let $\vec{u}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\vec{v}=\vec{w}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Then $\vec{u} \cdot \vec{v}=\vec{u} \cdot \vec{w}=0$, but $0\left[\begin{array}{l}1 \\ 0\end{array}\right]+1\left[\begin{array}{l}0 \\ 1\end{array}\right]-1\left[\begin{array}{l}0 \\ 1\end{array}\right]=$ $\left[\begin{array}{l}0 \\ 0\end{array}\right]$, so $\{\vec{u}, \vec{v}, \vec{w}\}$ is linearly dependent.

