Math 115 Spring 2015: Assignment 1

Solutions

Notice: The solution to question 1c uses material that will be covered in class on Monday $5 / 11$. Answering it correctly will give you bonus marks.

1. Consider the two vectors $\vec{u}=\left[\begin{array}{c}-2 \\ 4 \\ 4 \\ 0\end{array}\right], \vec{v}=\left[\begin{array}{c}2 \\ -4 \\ 2 \\ 5\end{array}\right]$.
(a) [3 marks] Determine a vector of length 3 that has the same direction as \vec{u}.

Solution: Any vector that has the same direction as \vec{u} takes the form $t \vec{u}$ for some $t \geq 0$. Let t be such that $t \vec{u}$ is the vector we are looking for. Then, $\|t \vec{u}\|=3$. Note that $\|t \vec{u}\|=t\|\vec{u}\|$ so $t=\frac{3}{\|\vec{u}\|}$. We compute $\|\vec{u}\|=\sqrt{(-2)^{2}+4^{2}+4^{2}+0^{2}}=\sqrt{4+16+16}=\sqrt{36}=6$, yielding $t=\frac{3}{6}$. Thus, the vector

$$
\frac{1}{2} \vec{u}=\left[\begin{array}{c}
-1 \\
2 \\
2 \\
0
\end{array}\right]
$$

answers the question.
(b) [3 marks] Determine the angle between \vec{u} and \vec{v}.

Solution: As we have seen, if θ is the angle between \vec{u} and \vec{v}, then $\cos \theta=\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|\|\vec{v}\|}$, giving

$$
\begin{aligned}
\theta & =\arccos \left(\frac{(-2) \cdot 2+4 \cdot(-4)+4 \cdot 2+0 \cdot 5}{6 \cdot \sqrt{2^{2}+(-4)^{2}+2^{2}+5^{2}}}\right) \\
& =\arccos \left(\frac{-4-16+8}{6 \cdot \sqrt{4+16+4+25}}\right) \\
& =\arccos \left(\frac{-12}{6 \cdot \sqrt{49}}\right)=\arccos \left(\frac{-12}{6.7}\right)=\arccos \left(-\frac{2}{7}\right)
\end{aligned}
$$

(c) [4 bonus marks] Write \vec{v} as the sum of two nonzero orthogonal vectors, one of which is a scalar multiple of \vec{u}.

Solution: We may write $\vec{v}=\operatorname{proj}_{\vec{u}} \vec{v}+\operatorname{perp}_{\vec{u}} \vec{v}$, where

$$
\begin{aligned}
\underset{\vec{u}}{\operatorname{proj} \vec{v}} & =\vec{u} \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|^{2}} \\
& =\vec{u} \frac{-12}{6^{2}}=\vec{u} \frac{-12}{36}=\vec{u} \frac{-1}{3} \\
& =\left[\begin{array}{c}
\frac{2}{3} \\
-\frac{4}{3} \\
-\frac{4}{3} \\
0
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\underset{\vec{u}}{\operatorname{perp} \vec{v}} & =\vec{v}-\operatorname{proj} \vec{v} \\
& =\left[\begin{array}{c}
2-\frac{2}{3} \\
-4+\frac{4}{3} \\
2+\frac{4}{3} \\
5
\end{array}\right]=\left[\begin{array}{c}
\frac{4}{3} \\
-\frac{8}{3} \\
\frac{10}{3} \\
5
\end{array}\right] .
\end{aligned}
$$

2. [3 marks] Let $\vec{u}=\left[\begin{array}{c}5 \\ -3\end{array}\right]$ and $\vec{v}=\left[\begin{array}{l}1 \\ 5\end{array}\right]$. Determine the set of all vectors \vec{x} such that $\|\vec{u}-\vec{x}\|=\|\vec{v}-\vec{x}\|$ (i.e. the distance between \vec{x} and \vec{u} is the same as the distance between \vec{x} and \vec{v}).

Solution: Note that $\|\vec{u}-\vec{x}\|=\|\vec{v}-\vec{x}\|$ is equivalent to $\|\vec{u}-\vec{x}\|^{2}=\|\vec{v}-\vec{x}\|^{2}$. We just write down the latter explicitly as

$$
\left\|\left[\begin{array}{c}
5-x_{1} \\
-3-x_{2}
\end{array}\right]\right\|^{2}=\left\|\left[\begin{array}{c}
1-x_{1} \\
5-x_{2}
\end{array}\right]\right\|^{2}
$$

to obtain $\left(5-x_{1}\right)^{2}+\left(-3-x_{2}\right)^{2}=\left(1-x_{1}\right)^{2}+\left(5-x_{2}\right)^{2}$. We develop to get

$$
25+x_{1}^{2}-10 x_{1}+9+x_{2}^{2}+6 x_{2}=1+x_{1}^{2}-2 x_{1}+25+x_{2}^{2}-10 x_{2}
$$

and finally $-8 x_{1}+16 x_{2}=-8$. We can multiply both sides by $-\frac{1}{4}$, yielding $x_{1}-2 x_{2}=1$. This is the equation of a line in \mathbb{R}^{2}. The vectors we are looking form take the form $\left\{\vec{x} \in \mathbb{R}^{2}: x_{1}-2 x_{2}=1\right\}$.
Optionally, we can express the set of all \vec{x} parametrically. The line passes through $(1,0)$ because $1-2.0=1$, and it has the direction $(2,1)$. Thus, all vectors \vec{x} take the form

$$
\vec{x}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]+t\left[\begin{array}{l}
2 \\
1
\end{array}\right] \text {, for } t \in \mathbb{R}
$$

3. For each of the following statements, either prove that it is true, or find a counterexample to prove that it is false.

Proposition 1. [3 marks] Let $\vec{u}, \vec{v} \in \mathbb{R}^{n}$. Then, $\|\vec{u}+\vec{v}\|^{2}=\|\vec{u}\|^{2}+\|\vec{v}\|^{2}$.
Proposition 2. [4 marks] Let $\vec{u}, \vec{v} \in \mathbb{R}^{n}$. Then, $\|\vec{u}+\vec{v}\|^{2}+\|\vec{u}-\vec{v}\|^{2}=2\|\vec{u}\|^{2}+2\|\vec{v}\|^{2}$.

Solution: For Proposition 1, the vectors

$$
\vec{u}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { and } \vec{v}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

provide a counter-example. Indeed, $\|\vec{u}+\vec{v}\|^{2}=2^{2}+1^{2}=5$ and $\|\vec{u}\|^{2}+\|\vec{v}\|^{2}=1^{2}+0^{2}+1^{2}+1^{2}=3$.
Proposition 2 is true. Indeed,

$$
\begin{aligned}
\|\vec{u}+\vec{v}\|^{2}+\|\vec{u}-\vec{v}\|^{2} & =(\vec{u}+\vec{v}) \cdot(\vec{u}+\vec{v})+(\vec{u}-\vec{v}) \cdot(\vec{u}-\vec{v}) \\
& =(\vec{u} \cdot \vec{u}+\vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{u}+\vec{v} \cdot \vec{v})+(\vec{u} \cdot \vec{u}-\vec{u} \cdot \vec{v}-\vec{v} \cdot \vec{u}+\vec{v} \cdot \vec{v}) \\
& =2 \vec{u} \cdot \vec{u}+2 \vec{v} \cdot \vec{v} \\
& =2\|\vec{u}\|^{2}+2\|\vec{v}\|^{2}
\end{aligned}
$$

