Math 115 Spring 2015: Quiz 9

Solutions

1. [8 marks] Let $\vec{v}_{1}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$ and $\vec{v}_{2}=\left[\begin{array}{c}-4 \\ 3\end{array}\right]$. Find a symmetric matrix G that has \vec{v}_{1} and \vec{v}_{2} as eigenvectors, with corresponding eigenvalues 5 and 10, respectively.

Hint: Note that $\vec{v}_{1} \cdot \vec{v}_{2}=0$, but $\left|\vec{v}_{1}\right| \neq 1$ and $\left|\vec{v}_{2}\right| \neq 1$.

Solution: If we construct a matrix $Q=\left[\begin{array}{ll}\vec{v}_{1} & \vec{v}_{2}\end{array}\right]$, then we get the diagonalization $Q^{-1} A Q=\operatorname{diag}(5,10)$. We can then construct $A=Q \operatorname{diag}(5,10) Q^{-1}$. However, in this case, we want A to be symmetric. Therefore, we want Q to be an orthogonal matrix, i.e. $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ must be orthonormal. The vectors \vec{v}_{1} and \vec{v}_{2} are already orthogonal, so we just need to make their lengths be one. We obtain

$$
\frac{\vec{v}_{1}}{\left|\vec{v}_{1}\right|}=\left[\begin{array}{c}
\frac{3}{5} \\
\frac{4}{5}
\end{array}\right] \quad \text { and } \quad \frac{\vec{v}_{2}}{\left|\vec{v}_{2}\right|}=\left[\begin{array}{c}
-\frac{4}{5} \\
\frac{3}{5}
\end{array}\right] .
$$

We construct

$$
Q=\left[\begin{array}{cc}
\frac{3}{5} & -\frac{4}{5} \\
\frac{4}{5} & \frac{3}{5}
\end{array}\right]
$$

which is an orthogonal matrix and get

$$
\begin{aligned}
G & =Q \operatorname{diag}(5,10) Q^{-1} \\
& =\left[\begin{array}{cc}
\frac{3}{5} & -\frac{4}{5} \\
\frac{4}{5} & \frac{3}{5}
\end{array}\right]\left[\begin{array}{cc}
5 & 0 \\
0 & 10
\end{array}\right]\left[\begin{array}{cc}
\frac{3}{5} & \frac{4}{5} \\
-\frac{4}{5} & \frac{3}{5}
\end{array}\right] \\
& =\left[\begin{array}{cc}
3 & -8 \\
4 & 6
\end{array}\right]\left[\begin{array}{cc}
\frac{3}{5} & \frac{4}{5} \\
-\frac{4}{5} & \frac{3}{5}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{41}{5} & -\frac{12}{5} \\
-\frac{12}{5} & \frac{34}{5}
\end{array}\right]
\end{aligned}
$$

2. [6 marks] Let $A=\left[\begin{array}{ccc}2 & -1 & -1 \\ 0 & 2 & 0 \\ 0 & -1 & 1\end{array}\right]$. Given

$$
P=\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right], \quad P^{-1}=\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right], \quad \text { and } \quad D=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

such that $P^{-1} A P=D$, compute $A^{10} .\left(\right.$ Note: $\left.2^{10}=1024\right)$.

Solution: As seen in the tutorial,

$$
\begin{aligned}
A^{10} & =P D^{10} P^{-1} \\
& =\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right] \cdot\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1024 & 0 & 0 \\
0 & 1024 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1024 & 1024 & 1 \\
0 & 1024 & 0 \\
0 & -1024 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1024 & -1023 & -1023 \\
0 & 1024 & 0 \\
0 & -1023 & 1
\end{array}\right]
\end{aligned}
$$

3. [6 marks] Prove that if A is orthogonally diagonalizable, then A^{2} is orthogonally diagonalizable.

Solution: By the Principal Axis Theorem, A is orthogonally diagonalizable if and only if it is symmetric, so A is symmetric. Then,

$$
A^{2}=A A=A^{T} A^{T}=(A A)^{T}=\left(A^{2}\right)^{T}
$$

so A^{2} is symmetric as well. Therefore, A^{2} is orthogonally diagonalizable.
Solution 2: \quad Since A is orthogonally diagonalizable, there exist an orthogonal matrix P and a diagonal matrix D such that $A=P D P^{T}$. As seen in class, $A^{2}=P D^{2} P^{T}$ where D^{2} is a diagonal matrix. Therefore, A^{2} is orthogonally diagonalizable.

Solution 3: Since A is orthogonally diagonalizable, there exist an orthogonal matrix P and a diagonal matrix D such that $P^{T} A P=D$, so $A=P D P^{T}$. By squaring both sides of the latter equation, we obtain

$$
A^{2}=\left(P D P^{T}\right)^{2}=\left(P D P^{T}\right) \cdot\left(P D P^{T}\right)=P D P^{T} P D P^{T}
$$

Since P is orthogonal,

$$
A^{2}=P D D P^{T}=P D^{2} P^{T}
$$

where D^{2} is a diagonal matrix. Therefore, A^{2} is orthogonally diagonalizable.

