## Math 115 Spring 2015: Quiz 8

## Solutions

1. [10 marks] Let  $A = \begin{bmatrix} -2 & 3 \\ 0 & 2 \end{bmatrix}$ . Compute the eigenvalues of A. For each eigenvalue, give a basis of the corresponding eigenspace.

Solution: First, we compute the eigenvalues of A as the roots of its characteristic polynomial:

$$\det(A - \lambda I) = \det \begin{bmatrix} -2 - \lambda & 3\\ 0 & 2 - \lambda \end{bmatrix} = (-2 - \lambda) \cdot (2 - \lambda) = (\lambda + 2) \cdot (\lambda - 2).$$

The two eigenvalues are thus -2 and 2.

## First eigenvalue: $\lambda = -2$ .

Corresponding eigenvectors  $\vec{u}$  are solutions to the system  $A\vec{u} = -2\vec{u}$ , which is equivalent to  $(A + 2I)\vec{u} = \vec{0}$ . The augmented matrix of this system is

$$\begin{bmatrix} -2+2 & 3 & | & 0 \\ 0 & 2+2 & | & 0 \end{bmatrix} = \begin{bmatrix} 0 & 3 & | & 0 \\ 0 & 4 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$$

We thus have  $0u_1 + 1u_2 = 0$ , so  $u_2 = 0$ ,

$$\vec{u} = s \cdot \left[ \begin{array}{c} 1 \\ 0 \end{array} \right], \ s \in \mathbb{R}$$

and  $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix} \right\}$  is a basis of the eigenspace associated to the eigenvalue -2.

## Second eigenvalue: $\lambda = 2$ .

Corresponding eigenvectors  $\vec{v}$  are solutions to the system  $A\vec{v} = 2\vec{v}$ , which is equivalent to  $(A - 2I)\vec{v} = \vec{0}$ . The augmented matrix of this system is

$$\begin{bmatrix} -2-2 & 3 & | & 0 \\ 0 & 2-2 & | & 0 \end{bmatrix} = \begin{bmatrix} -4 & 3 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & \frac{3}{4} & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$$

We thus have  $v_1 = \frac{3}{4}v_2$ , so

$$\vec{v} = t \cdot \begin{bmatrix} \frac{3}{4} \\ 1 \end{bmatrix}, \ t \in \mathbb{R}$$

and  $\left\{ \begin{bmatrix} \frac{3}{4} \\ 1 \end{bmatrix} \right\}$  is a basis of the eigenspace associated to the eigenvalue 2.

2. [5 marks] Let

$$G = \begin{bmatrix} -1 & 0 & -3 & 6 \\ -\frac{7}{4} & \frac{5}{2} & -\frac{1}{4} & 2 \\ -\frac{1}{2} & 1 & \frac{9}{2} & -2 \\ -\frac{1}{4} & \frac{1}{2} & \frac{5}{4} & 1 \end{bmatrix}, \quad \vec{v}_1 = \begin{bmatrix} 2 \\ 3 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \quad \vec{v}_3 = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 1 \\ 1 \end{bmatrix}, \quad \vec{v}_4 = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

The eigenvalues of G are

- 2 (with corresponding eigenspace span{ $\vec{v}_1, \vec{v}_2$ }),
- 4 (with corresponding eigenspace span{ $\vec{v}_3$ }), and
- -1 (with corresponding eigenspace span{ $\vec{v}_4$ }).

Find an invertible matrix P and a diagonal matrix D such that the matrix equation  $P^{-1}GP = D$  is satisfied. Note: It is not necessary to compute  $P^{-1}$  or verify that the equation is satisfied. Giving P and D is enough.

**Solution:** We let P be the matrix constructed by gathering basis vectors for the eigenspaces of G:

$$P = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 & \vec{v}_4 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 & 2 \\ 3 & 0 & 1 & 1 \\ 0 & 1 & 2 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

and D be a diagonal matrix whose diagonal elements are the corresponding eigenvalues of G:

$$D = \operatorname{diag}(2, 2, 4, -1) = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}.$$

We have seen in class that under such conditions,  $P^{-1}GP = D$ .

3. [5 marks] Let  $B \in \mathbb{R}^{n \times n}$  be a diagonalizable matrix such that  $P^{-1}BP = \text{diag}(\lambda_1, \ldots, \lambda_n)$  where  $\lambda_1, \ldots, \lambda_n$  are eigenvalues of B. Assuming that B is invertible, give an expression of  $B^{-1}$  in terms of P,  $P^{-1}$  and  $\lambda_1, \ldots, \lambda_n$ .

Solution: Pre-multiply both sides of

$$P^{-1}BP = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$

by P and post-multiply them by  $P^{-1}$ . We obtain

$$B = P \operatorname{diag}(\lambda_1, \ldots, \lambda_n) P^{-1}.$$

Since  $\operatorname{diag}(\lambda_1, \ldots, \lambda_n)$  is a diagonal matrix, its inverse is

$$(\operatorname{diag}(\lambda_1,\ldots,\lambda_n))^{-1} = \operatorname{diag}(\frac{1}{\lambda_1},\ldots,\frac{1}{\lambda_n})$$

so we get

$$B = P \operatorname{diag}(\frac{1}{\lambda_1}, \dots, \frac{1}{\lambda_n})P^{-1}.$$