Math 115 Spring 2015: Quiz 8

Solutions

1. [10 marks] Let $A=\left[\begin{array}{cc}-2 & 3 \\ 0 & 2\end{array}\right]$. Compute the eigenvalues of A. For each eigenvalue, give a basis of the corresponding eigenspace.

Solution: First, we compute the eigenvalues of A as the roots of its characteristic polynomial:

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
-2-\lambda & 3 \\
0 & 2-\lambda
\end{array}\right]=(-2-\lambda) \cdot(2-\lambda)=(\lambda+2) \cdot(\lambda-2) .
$$

The two eigenvalues are thus -2 and 2 .
First eigenvalue: $\lambda=-2$.
Corresponding eigenvectors \vec{u} are solutions to the system $A \vec{u}=-2 \vec{u}$, which is equivalent to $(A+2 I) \vec{u}=\overrightarrow{0}$. The augmented matrix of this system is

$$
\left[\begin{array}{cc|c}
-2+2 & 3 & 0 \\
0 & 2+2 & 0
\end{array}\right]=\left[\begin{array}{ll|l}
0 & 3 & 0 \\
0 & 4 & 0
\end{array}\right] \sim\left[\begin{array}{ll|l}
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

We thus have $0 u_{1}+1 u_{2}=0$, so $u_{2}=0$,

$$
\vec{u}=s \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right], s \in \mathbb{R}
$$

and $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$ is a basis of the eigenspace associated to the eigenvalue -2 .
Second eigenvalue: $\lambda=2$.
Corresponding eigenvectors \vec{v} are solutions to the system $A \vec{v}=2 \vec{v}$, which is equivalent to $(A-2 I) \vec{v}=\overrightarrow{0}$. The augmented matrix of this system is

$$
\left[\begin{array}{cc|c}
-2-2 & 3 & 0 \\
0 & 2-2 & 0
\end{array}\right]=\left[\begin{array}{cc|c}
-4 & 3 & 0 \\
0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & \frac{3}{4} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

We thus have $v_{1}=\frac{3}{4} v_{2}$, so

$$
\vec{v}=t \cdot\left[\begin{array}{c}
\frac{3}{4} \\
1
\end{array}\right], t \in \mathbb{R}
$$

and $\left\{\left[\begin{array}{c}\frac{3}{4} \\ 1\end{array}\right]\right\}$ is a basis of the eigenspace associated to the eigenvalue 2.
2. [5 marks] Let

$$
G=\left[\begin{array}{cccc}
-1 & 0 & -3 & 6 \\
-\frac{7}{4} & \frac{5}{2} & -\frac{1}{4} & 2 \\
-\frac{1}{2} & 1 & \frac{9}{2} & -2 \\
-\frac{1}{4} & \frac{1}{2} & \frac{5}{4} & 1
\end{array}\right], \quad \vec{v}_{1}=\left[\begin{array}{c}
2 \\
3 \\
0 \\
1
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{c}
1 \\
0 \\
1 \\
1
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{c}
0 \\
1 \\
2 \\
1
\end{array}\right], \quad \vec{v}_{4}=\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right] .
$$

The eigenvalues of G are

- 2 (with corresponding eigenspace $\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$),
- 4 (with corresponding eigenspace $\operatorname{span}\left\{\vec{v}_{3}\right\}$), and
- -1 (with corresponding eigenspace $\operatorname{span}\left\{\vec{v}_{4}\right\}$).

Find an invertible matrix P and a diagonal matrix D such that the matrix equation $P^{-1} G P=D$ is satisfied.
Note: It is not necessary to compute P^{-1} or verify that the equation is satisfied. Giving P and D is enough.

Solution: We let P be the matrix constructed by gathering basis vectors for the eigenspaces of G :

$$
P=\left[\begin{array}{llll}
\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3} & \vec{v}_{4}
\end{array}\right]=\left[\begin{array}{cccc}
2 & 1 & 0 & 2 \\
3 & 0 & 1 & 1 \\
0 & 1 & 2 & 0 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

and D be a diagonal matrix whose diagonal elements are the corresponding eigenvalues of G :

$$
D=\operatorname{diag}(2,2,4,-1)=\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

We have seen in class that under such conditions, $P^{-1} G P=D$.
3. [5 marks] Let $B \in \mathbb{R}^{n \times n}$ be a diagonalizable matrix such that $P^{-1} B P=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ where $\lambda_{1}, \ldots, \lambda_{n}$ are eigenvalues of B. Assuming that B is invertible, give an expression of B^{-1} in terms of P, P^{-1} and $\lambda_{1}, \ldots, \lambda_{n}$.

Solution: Pre-multiply both sides of

$$
P^{-1} B P=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

by P and post-multiply them by P^{-1}. We obtain

$$
B=P \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) P^{-1}
$$

Since $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is a diagonal matrix, its inverse is

$$
\left(\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right)^{-1}=\operatorname{diag}\left(\frac{1}{\lambda_{1}}, \ldots, \frac{1}{\lambda_{n}}\right)
$$

so we get

$$
B=P \operatorname{diag}\left(\frac{1}{\lambda_{1}}, \ldots, \frac{1}{\lambda_{n}}\right) P^{-1}
$$

