Math 115 Spring 2015: Quiz 7

Solutions

1. [5 marks] Find the determinant of the following matrix:

$$
A=\left[\begin{array}{llll}
2 & 2 & 2 & 2 \\
2 & 3 & 2 & 2 \\
3 & 3 & 4 & 3 \\
4 & 4 & 4 & 0
\end{array}\right]
$$

Hint: Use row operations to put the matrix in REF or RREF.

Solution: If we multiply the first row of A by $\frac{1}{2}$, we obtain the matrix

$$
A^{\prime}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 3 & 2 & 2 \\
3 & 3 & 4 & 3 \\
4 & 4 & 4 & 0
\end{array}\right]
$$

whose determinant is half of the determinant of A. Then, subtracting multiples of the first row to the others, we obtain

$$
A^{\prime}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 3 & 2 & 2 \\
3 & 3 & 4 & 3 \\
4 & 4 & 4 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -4
\end{array}\right]=A^{\prime \prime}
$$

Because $A^{\prime \prime}$ is triangular, its determinant is the product of its diagonal entries, so $\operatorname{det}\left(A^{\prime \prime}\right)=1.1 .1 .(-4)=$ $-4=\operatorname{det}\left(A^{\prime}\right)$. Since $\operatorname{det}\left(A^{\prime}\right)=\frac{1}{2} \operatorname{det}(A)$, we have $\operatorname{det}(A)=-8$.
2. [5 marks] The determinant of the following matrix is a constant number independent of $p, q, c \in \mathbb{R}$. Find that number.

$$
B=\left[\begin{array}{ccc}
p & q & c \\
p^{2}-p & q(p-1) & p c-c \\
0 & 0 & 1
\end{array}\right]
$$

Hint: Use row operations to put the matrix in REF.

Solution: Observe that

$$
B=\left[\begin{array}{ccc}
p & q & c \\
p(p-1) & q(p-1) & c(p-1) \\
0 & 0 & 1
\end{array}\right] .
$$

We subtract $(p-1)$ times the first row from the second, and obtain

$$
\left[\begin{array}{ccc}
p & q & c \\
p(p-1) & q(p-1) & c(p-1) \\
0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{ccc}
p & q & c \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The latter matrix has a row of zeros, so its determinant is zero. So $\operatorname{det}(B)=0$.
3. [5 marks] Let C be a 4×4 matrix whose determinant is -32 . What is the determinant of $\frac{1}{2} C$?

Solution: The matrix $\frac{1}{2} C$ can be obtained by performing 4 elementary row operations on C. Each multiplies one row of C by $\frac{1}{2}$. Therefore, $\operatorname{det}\left(\frac{1}{2} C\right)=\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \operatorname{det}(C)=\frac{1}{16}(-32)=-2$.

Alternative solution:

$$
\operatorname{det}\left(\frac{1}{2} C\right)=\operatorname{det}\left(\left[\begin{array}{cccc}
\frac{1}{2} & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & \frac{1}{2}
\end{array}\right] \cdot C\right)=\operatorname{det}\left(\left[\begin{array}{cccc}
\frac{1}{2} & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & \frac{1}{2}
\end{array}\right]\right) \cdot \operatorname{det}(C)=\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}(-32)=-2
$$

4. [5 marks] The vector $\vec{v}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ is an eigenvector of $D=\left[\begin{array}{lll}2 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 1\end{array}\right]$. Find the corresponding eigenvalue.

Solution:

$$
\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 1 & 2 \\
1 & 1 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
3 \\
3
\end{array}\right]=3 \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

so the corresponding eigenvalue is 3 .

