Math 115 Spring 2015: Quiz 6

Solutions

1. Compute the inverse of

$$
B=\left[\begin{array}{lll}
2 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

Solution: The RREF of

$$
\left[\begin{array}{lll|lll}
2 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

is

$$
\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & -1 & 2 & 1 \\
0 & 0 & 1 & 1 & -2 & 0
\end{array}\right] .
$$

so

$$
B^{-1}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 2 & 1 \\
1 & -2 & 0
\end{array}\right]
$$

2. Let

$$
C=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

The value of $\operatorname{det}(C)$ is independent of θ. Find that value. Hint: For any angle $\alpha \in \mathbb{R}, \cos ^{2} \alpha=1-\sin ^{2} \alpha$.

Solution:

$$
\operatorname{det}\left(\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\right)=\cos \theta \cos \theta+\sin \theta \sin \theta=\cos ^{2} \theta+\sin ^{2} \theta=1
$$

3. Let

$$
D=\left[\begin{array}{lll}
1 & 0 & 2 \\
a & b & 3 \\
2 & 0 & 1
\end{array}\right]
$$

Determine the values of $a, b \in \mathbb{R}$ such that $\operatorname{det}(D)=0$.
Solution: We expand along the third column to obtain

$$
\operatorname{det}(D)=b \cdot \operatorname{det}\left(\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]\right)=b \cdot(1.1-2.2)=-3 b
$$

so $\operatorname{det}(D)=0$ if and only if $b=0$ (regardless of the value of a).
4. Assume that $A \in \mathbb{R}^{n \times n}$ is such that $3(A \cdot A \cdot A)+2(A \cdot A)=I$. Prove that A^{-1} exists. Hint: Find an expression such that A multiplied by this expression is I. This proves that the expression is A^{-1}.

Solution: We rewrite $3(A \cdot A \cdot A)+2(A \cdot A)=I$ as $A \cdot 3 A \cdot A+A \cdot 2 A=I$ and factor out A to obtain $(A) \cdot(3 A \cdot A+2 A)=I$

Therefore, if the expression $(3 A \cdot A+2 A)$ is defined, then it is the inverse of A. Since A is square, the expression is well-defined, so the inverse of A exists.

