Math 115 Spring 2015: Quiz 5

Solutions

1. [4 marks] Let $E = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix}$ and $F = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$. For a given vector $\vec{x} \in \mathbb{R}^2$, we compute $\vec{y} = E\vec{x}$. Then we compute $\vec{z} = F\vec{y}$. Find a single matrix $G \in \mathbb{R}^{2 \times 2}$ such that $\vec{z} = G\vec{x}$.

Solution: We know that $\vec{z} = F\vec{y} = F(E\vec{x}) = FE\vec{x}$, so G = FE:

$$G = \left[\begin{array}{cc} 2 & -1 \\ 1 & 1 \end{array} \right] \cdot \left[\begin{array}{cc} 1 & 3 \\ 2 & -1 \end{array} \right] = \left[\begin{array}{cc} 0 & 7 \\ 3 & 2 \end{array} \right].$$

2. Let

$$A = \left[\begin{array}{rrrrr} 1 & 0 & 2 & 0 & 1 \\ 1 & 1 & 4 & 0 & 0 \\ 1 & 0 & 2 & 1 & 0 \end{array} \right].$$

(a) [4 marks] Compute the RREF of A.

Solution: We perform the following two row operations: R2' = R2 - R1 and R3' = R3 - R1.

ſ	1	0	2	0	1		1	0	2	0	1]	
	1	1	4	0	0	\sim	0	1	2	0	-1	
	1	0	2	1	0		0	0	0	1	-1	

(b) [1 marks] Determine the rank of A.

Solution: There are three leading ones in the RREF of A, so rank(A) = 3.

(c) [3 marks] Determine a basis of the columnspace of A.

Solution: One basis of col(A) is given by the columns of A that correspond to columns of its RREF having a leading one. Therefore,

ſ	1		0		0	
{	1	,	1	,	0	}
l	$\begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$		0		1]]

is a basis of col(A).

(d) [3 marks] Determine a basis of the rowspace of A.

Solution: One basis of row(A) is given by the nonzero rows of B. Therefore,

ſ	$\begin{bmatrix} 1 \end{bmatrix}$		0		0	
	0		1		0	
ł	2	,	2	,	0	}
	0		0		1	
l	1		1			J

is a basis of row(A).

(e) [5 marks] Let S be the set of solutions to the system $A \cdot \vec{x} = \vec{0}$. S is a subspace. Determine a basis of S.

Solution: We write the RREF of the system $A\vec{x} = \vec{0}$. Because the right-hand side is zero in the system, it will be zero in its RREF too. The other coefficients in the RREF will simply be the coefficients in the RREF of A:

The general solution to this system is

$$\begin{cases} x_1 = -2x_3 & -1x_5 \\ x_2 = -2x_3 & +1x_5 \\ x_4 = & 1x_5 \end{cases}$$

where x_3 and x_5 are free variables. As a vector equation, we can write this subspace as

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} s + \begin{bmatrix} -1 \\ 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} t \text{ for all } s, t \in \mathbb{R}.$$

It is easy to verify that the only solution for $\vec{x} = 0$ is s = t = 0, so the two vectors above are linearly independent. Therefore,

	-2		-1		
	-2		1		
ł	1	,	0		ł
	0		1		
l	0		1		

is a basis of S.