Math 115 Spring 2015: Quiz 5

Solutions

1. [4 marks] Let $E=\left[\begin{array}{cc}1 & 3 \\ 2 & -1\end{array}\right]$ and $F=\left[\begin{array}{cc}2 & -1 \\ 1 & 1\end{array}\right]$. For a given vector $\vec{x} \in \mathbb{R}^{2}$, we compute $\vec{y}=E \vec{x}$. Then we compute $\vec{z}=F \vec{y}$. Find a single matrix $G \in \mathbb{R}^{2 \times 2}$ such that $\vec{z}=G \vec{x}$.

Solution: We know that $\vec{z}=F \vec{y}=F(E \vec{x})=F E \vec{x}$, so $G=F E$:

$$
G=\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right] \cdot\left[\begin{array}{cc}
1 & 3 \\
2 & -1
\end{array}\right]=\left[\begin{array}{ll}
0 & 7 \\
3 & 2
\end{array}\right] .
$$

2. Let

$$
A=\left[\begin{array}{lllll}
1 & 0 & 2 & 0 & 1 \\
1 & 1 & 4 & 0 & 0 \\
1 & 0 & 2 & 1 & 0
\end{array}\right]
$$

(a) [4 marks] Compute the RREF of A.

Solution: We perform the following two row operations: $R 2^{\prime}=R 2-R 1$ and $R 3^{\prime}=R 3-R 1$.

$$
\left[\begin{array}{ccccc}
1 & 0 & 2 & 0 & 1 \\
1 & 1 & 4 & 0 & 0 \\
1 & 0 & 2 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 0 & 2 & 0 & 1 \\
0 & 1 & 2 & 0 & -1 \\
0 & 0 & 0 & 1 & -1
\end{array}\right]
$$

(b) [1 marks] Determine the rank of A.

Solution: There are three leading ones in the RREF of A, so $\operatorname{rank}(A)=3$.
(c) [3 marks] Determine a basis of the columnspace of A.

Solution: One basis of $\operatorname{col}(A)$ is given by the columns of A that correspond to columns of its RREF having a leading one. Therefore,

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

is a basis of $\operatorname{col}(A)$.
(d) [3 marks] Determine a basis of the rowspace of A.

Solution: One basis of $\operatorname{row}(A)$ is given by the nonzero rows of B. Therefore,

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
2 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
2 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
0 \\
1 \\
-1
\end{array}\right]\right\}
$$

is a basis of $\operatorname{row}(A)$.
(e) [5 marks] Let S be the set of solutions to the system $A \cdot \vec{x}=\overrightarrow{0} . S$ is a subspace. Determine a basis of S.

Solution: We write the RREF of the system $A \vec{x}=\overrightarrow{0}$. Because the right-hand side is zero in the system, it will be zero in its RREF too. The other coefficients in the RREF will simply be the coefficients in the RREF of A :

$$
\left[\begin{array}{ccccc|c}
1 & 0 & 2 & 0 & 1 & 0 \\
0 & 1 & 2 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & -1 & 0
\end{array}\right]
$$

The general solution to this system is

$$
\left\{\begin{array}{rrrr}
x_{1} & = & -2 x_{3} & -1 x_{5} \\
x_{2} & = & -2 x_{3} & +1 x_{5} \\
x_{4} & = & 1 x_{5}
\end{array}\right.
$$

where x_{3} and x_{5} are free variables. As a vector equation, we can write this subspace as

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-2 \\
1 \\
0 \\
0
\end{array}\right] s+\left[\begin{array}{c}
-1 \\
1 \\
0 \\
1 \\
1
\end{array}\right] t \quad \text { for all } s, t \in \mathbb{R}
$$

It is easy to verify that the only solution for $\vec{x}=0$ is $s=t=0$, so the two vectors above are linearly independent. Therefore,

$$
\left\{\left[\begin{array}{c}
-2 \\
-2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
0 \\
1 \\
1
\end{array}\right]\right\}
$$

is a basis of S.

