Math 115 Spring 2015: Quiz 1

Solutions

1. $[3$ marks $]$ Let $\vec{v}=\left[\begin{array}{c}3 \\ -4\end{array}\right]$. Find a vector \vec{x} of length 20 such that \vec{x} is on the line $\overrightarrow{0}+t \vec{v}, t \in \mathbb{R}$.

Solution: Any vector on the line $\overrightarrow{0}+t \vec{v}$ takes the form $\vec{y}=t \vec{v}$, for some value of $t \in \mathbb{R}$. We are looking for \vec{y} such that $\|\vec{y}\|=20$, i.e. $\|\vec{y}\|=\|t \vec{v}\|=|t| \cdot\|\vec{v}\|=20$, so $|t|=\frac{20}{\|\vec{v}\|}$.

$$
\|\vec{v}\|=\sqrt{3^{2}+(-4)^{2}}=\sqrt{9+16}=\sqrt{25}=5
$$

so $|t|=\frac{20}{5}=4$. A solution is given by

$$
\vec{y}=4\left[\begin{array}{c}
3 \\
-4
\end{array}\right]=\left[\begin{array}{c}
12 \\
-16
\end{array}\right] .
$$

2. [3 marks] Determine a scalar equation (i.e. the values of a, b, c, d in $a x_{1}+b x_{2}+c x_{3}=d$) of the plane in \mathbb{R}^{3} whose normal vector is $\left[\begin{array}{c}-2 \\ 3 \\ 1\end{array}\right]$ and contains the point $(2,2,-1)$.

Solution: Because a normal vector to the plane is given by

$$
\vec{n}=\left[\begin{array}{c}
-2 \\
3 \\
1
\end{array}\right]
$$

we know that the equation of the plane takes the form

$$
\vec{n} \cdot \vec{x}=-2 x_{1}+3 x_{2}+x_{3}=d
$$

for some value of d. We now find the value of d by exploiting the fact that the point $(2,2,-1)$ belongs to the plane, so $-2 x_{1}+3 x_{2}+x_{3}=d$ for $x_{1}=2, x_{2}=2$ and $x_{3}=-1$. This gives $-2.2+3.2+(-1)=-4+6-1=1=d$. An equation of the plane is therefore given by

$$
-2 x_{1}+3 x_{2}+x_{3}=1
$$

3. [3 marks] Determine the point on the line $\vec{x}=\left[\begin{array}{c}1 \\ -1 \\ -1\end{array}\right]+t\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$ that satisfies $x_{1}-2 x_{2}+x_{3}=4$.

Solution: The point needs to satisfy

$$
\left\{\begin{array}{l}
x_{1}=1+t \\
x_{2}=-1+2 t \\
x_{3}=-1-t \\
x_{1}=2 x_{2}+x_{3}=4
\end{array}\right.
$$

This yields $(1+t)+2-4 t-1-t=4$, so $-4 t=4-1-2+1=2$, and finally $t=-\frac{1}{2}$. We obtain

$$
\vec{x}=\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
-2 \\
-\frac{1}{2}
\end{array}\right]
$$

4. [3 marks] Let $\vec{u}, \vec{v} \in \mathbb{R}^{n}$ be unit vectors (i.e. $\|\vec{u}\|=\|\vec{v}\|=1$) such that $\|\vec{v}-\vec{u}\|=1$. Prove that $\vec{u} . \vec{v}=K$ where $K \in \mathbb{R}$ is a constant real number, and determine the numeric value of K. (Hint: Expand and simplify the expression $\|\vec{v}-\vec{u}\|^{2}=1^{2}$.)

Solution: Expanding $\|\vec{v}-\vec{u}\|^{2}=1^{2}$ gives

$$
\begin{aligned}
\|\vec{v}-\vec{u}\|^{2} & =1 \\
(\vec{v}-\vec{u})(\vec{v}-\vec{u}) & =1 \\
\vec{v} \vec{v}-\vec{u} \vec{v}-\vec{v} \vec{u}+\vec{u} \vec{u} & =1 \\
\|\vec{v}\|^{2}-2 \vec{u} \vec{v}+\|\vec{u} \vec{u}\|^{2} & =1 \\
1-2 \vec{u} \vec{v}+1 & =1 \\
\vec{u} \vec{v} & =\frac{1}{2}=K .
\end{aligned}
$$

5. [3 marks] Let $\vec{u}=\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right], \vec{v}=\left[\begin{array}{l}4 \\ 2 \\ 4\end{array}\right]$ and $\vec{w}=\left[\begin{array}{c}2 \\ 1 \\ 1\end{array}\right]$. Determine the set of all vectors $\vec{x} \in \mathbb{R}^{3}$ such that: (a) \vec{x} is a linear combination of \vec{u} and \vec{v}, and (b) \vec{x} is orthogonal to \vec{w}. Express your set of vectors as either a single point, a vector equation of a line, or a scalar equation of a plane.

Solution: By (a), \vec{x} can be written $\vec{x}=s \vec{u}+t \vec{v}$ for some $s, t \in \mathbb{R}$. By (b), $\vec{x} . \vec{w}=0$. Writing a system combining both, we obtain

$$
\left\{\begin{array}{l}
\vec{x}=s\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]+t\left[\begin{array}{l}
4 \\
2 \\
4
\end{array}\right] \\
\vec{x} \cdot\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]=0
\end{array}\right.
$$

which can be rewritten

$$
\left\{\begin{array}{l}
x_{1}=s+4 t \\
x_{2}=s+2 t \\
x_{3}=-s+4 t \\
2 x_{1}+x_{2}+x_{3}=0
\end{array}\right.
$$

Using the expressions of x_{1}, x_{2}, x_{3} given by the first three equations in the fourth, we obtain

$$
\begin{aligned}
2(s+4 t)+(s+2 t)+(-s+4 t) & =0 \\
2 s+8 t+s+2 t-s+4 t & =0 \\
2 s+14 t & =0 \\
s & =-7 t .
\end{aligned}
$$

Now, we replace s by $-7 t$ in the first three equations, yielding

$$
\left\{\begin{array}{l}
x_{1}=-7 t+4 t=-3 t \\
x_{2}=-7 t+2 t=-5 t \\
x_{3}=7 t+4 t=11 t
\end{array}\right.
$$

or equivalently, the vector equation of a line

$$
\vec{x}=\overrightarrow{0}+t\left[\begin{array}{c}
-3 \\
-5 \\
11
\end{array}\right]
$$

