Linear algebra properties and identities

Here is a list of useful identities and properties for computing with vectors and matrices. This list is not exhaustive. You are not allowed to read course material (including this list) at the exam.

1 Vectors

Let $\vec{a}, \vec{b}, \vec{c} \in \mathbb{R}^{n}$ and $s, t \in \mathbb{R}$.

- $\vec{a}+\vec{b}=\vec{b}+\vec{a}$
- $\vec{a}+(\vec{b}+\vec{c})=(\vec{a}+\vec{b})+\vec{c}$
- $s(t \vec{a})=(s t) \vec{a}$
- $(s+t) \vec{a}=s \vec{a}+t \vec{a}$
- $s(\vec{a}+\vec{b})=s \vec{a}+s \vec{b}$
- $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}$
- $\vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \vec{b}+\vec{a} \vec{c}$
- $(s \vec{a}) \cdot \vec{b}=s(\vec{a} \cdot \vec{b})=\vec{a} \cdot(s \vec{b})$
- $(s \vec{a}) \cdot(t \vec{b})=s t(\vec{a} \cdot \vec{b})$

2 Matrices

Let $A, B, C \in \mathbb{R}^{m \times n}, G \in \mathbb{R}^{p \times q}, H \in \mathbb{R}^{q \times m}, \vec{v} \in \mathbb{R}^{n}$ and $s, t \in \mathbb{R}$.

- $A+B=B+A$
- $A+(B+C)=(A+B)+C$
- $s(t A)=(s t) A$
- $s(A+B)=s A+s B$
- $(s+t) A=s A+t A$
- $H(s A)=s(H A)$
- $A(s \vec{v})=s(A \vec{v})$
- $H(A \vec{v})=(H A) \vec{v}$
- $G(H A)=(G H) A$
- $(s H) \cdot(t A)=s t H A$
- $(s A)^{T}=s\left(A^{T}\right)$
- $(A+B)^{T}=A^{T}+B^{T}$
- $(H A)^{T}=A^{T} H^{T}$

