Math 115 Spring 2015: Assignment 9

Due: at the tutorial Thursday $7 / 23$

Last name:

First name:
ID number:

Note: You need to show all the steps and the reasoning in obtaining your answers in order to receive full marks.

1. [5 marks] Let

$$
\vec{v}_{1}=\left[\begin{array}{l}
\frac{2}{3} \\
\frac{2}{3} \\
\frac{1}{3}
\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{c}
\frac{2}{3} \\
-\frac{1}{3} \\
-\frac{2}{3}
\end{array}\right] \quad \vec{v}_{3}=\left[\begin{array}{c}
\frac{1}{3} \\
-\frac{2}{3} \\
\frac{2}{3}
\end{array}\right] .
$$

Knowing that $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is an orthonormal basis of \mathbb{R}^{3}, write the vector $\vec{x}=\left[\begin{array}{c}6 \\ -6 \\ 15\end{array}\right]$ as a linear combination of $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$.
2. [5 marks] Let $S=\operatorname{span}\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$, with

$$
\vec{u}_{1}=\left[\begin{array}{c}
1 \\
1 \\
-1 \\
0
\end{array}\right], \quad \text { and } \quad \vec{u}_{2}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right] .
$$

Find a basis of S^{\perp}. Hint: A vector is orthogonal to S if and only if it is orthogonal to both \vec{u}_{1} and \vec{u}_{2}.
3. [10 marks] Let

$$
\vec{w}_{1}=\left[\begin{array}{c}
1 \\
1 \\
-1 \\
0
\end{array}\right], \quad \vec{w}_{2}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right] \quad \text { and } \quad \vec{w}_{3}=\left[\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right] .
$$

Find an orthonormal basis of $\operatorname{span}\left\{\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}\right\}$.
4. [10 marks] Orthogonally diagonalize the matrix

$$
A=\left[\begin{array}{ccc}
1 & -2 & 2 \\
-2 & 4 & -4 \\
2 & -4 & 4
\end{array}\right]
$$

i.e. find an orthogonal matrix Q and a diagonal matrix D such that $Q^{T} A Q=D$.
5. (a) [3 marks] Show that the following statement is false by providing a counter-example:

Let $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ be a basis of \mathbb{R}^{n} and $S=\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ for some positive integer $k<n$. Then

$$
S^{\perp}=\operatorname{span}\left\{\vec{v}_{k+1}, \ldots, \vec{v}_{n}\right\} .
$$

(b) [2 marks] What additional property would $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ need for the statement to be true? (no proof necessary)
6. [5 marks] Prove that the determinant of an orthogonal matrix is always 1 or -1 . Hint: Recall that for any square matrix A, we have $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$. Also, if A is invertible, then $A^{-1} A=I$.

