Math 115 Spring 2015: Assignment 8

Due: at the tutorial Thursday $7 / 9$

Last name:

First name:

ID number:

Note: You need to show all the steps and the reasoning in obtaining your answers in order to receive full marks.

1. Let

$$
A=\left[\begin{array}{ccc}
1 & 6 & -3 \\
0 & 4 & 0 \\
-3 & 6 & 1
\end{array}\right]
$$

(a) [5 marks] Find the eigenvalues of A. For each eigenvalue, give the algebraic multiplicity, determine a basis of the corresponding eigenspace, and give the geometric multiplicity.
(b) [1 mark] Diagonalize A by finding an invertible matrix P and a diagonal matrix D such that $P^{-1} A P=D$
2. [5 marks] Determine a matrix $B \in \mathbb{R}^{2 \times 2}$ for which $\left[\begin{array}{c}3 \\ -2\end{array}\right]$ and $\left[\begin{array}{c}-4 \\ 3\end{array}\right]$ are eigenvectors, with corresponding eigenvalue -4 and 2 , respectively.
3. [4 marks] Let $C \in \mathbb{R}^{n \times n}$ be a diagonalizable matrix that has n distinct eigenvalues. Prove that $\operatorname{det}(C)$ is the product of the n eigenvalues of C.
4. [5 marks] Let $G \in \mathbb{R}^{n \times n}$ be a diagonalizable matrix such that $Q^{-1} G Q=\operatorname{diag}\left(\mu_{1}, \ldots, \mu_{n}\right)$. Find an expression of G^{4} that does not involve G (it may involve, Q and μ_{1}, \ldots, μ_{n}). Give the eigenvalues of G^{4}.

