Math 115 Spring 2015: Assignment 7

Due: at the tutorial Thursday $7 / 2$

Last name:

First name:

ID number:

Note: You need to show all the steps and the reasoning in obtaining your answers in order to receive full marks.

1. [5 marks] Let

$$
A=\left[\begin{array}{ccc}
4 & 2 a+2 b & 2 a \\
2 & a+b+1 & a+b \\
2 & a+b+1 & a+b+1
\end{array}\right]
$$

where $a, b \in \mathbb{R}$. The determinant of A is a constant independent of a and b. Find its value. Hint: Compute the REF of A.
2. [5 marks] Let

$$
B=\left[\begin{array}{ccc}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right], \quad \text { and } \quad C=\left[\begin{array}{ccc}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
t \cdot b_{31} & t \cdot b_{32} & t \cdot b_{33}
\end{array}\right]
$$

for $t \in \mathbb{R}$. Use Cramer's rule to prove that

$$
\text { if } \quad B^{-1}=\left[\begin{array}{lll}
g_{11} & g_{12} & g_{13} \\
g_{21} & g_{22} & g_{23} \\
g_{31} & g_{32} & g_{33}
\end{array}\right], \quad \text { then } \quad C^{-1}=\left[\begin{array}{ccc}
g_{11} & g_{12} & \frac{1}{t} \cdot g_{13} \\
g_{21} & g_{22} & \frac{1}{t} \cdot g_{23} \\
g_{31} & g_{32} & \frac{1}{t} \cdot g_{33}
\end{array}\right]
$$

3. [5 marks] For each of the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$, determine whether or not it is an eigenvector of E. If so, determine its corresponding eigenvalue.

$$
E=\left[\begin{array}{ccc}
12 & -18 & 6 \\
13 & -17 & 6 \\
11 & -9 & 4
\end{array}\right], \quad \vec{v}_{1}=\left[\begin{array}{c}
3 \\
1 \\
-4
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{c}
0 \\
-1 \\
3
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{c}
-1 \\
1 \\
5
\end{array}\right] .
$$

4. [5 marks] Prove that if λ is an eigenvalue of $D \in \mathbb{R}^{n \times n}$, then λ^{2} is an eigenvalue of $D \cdot D$.
