Math 115 Spring 2015: Assignment 6

Due: at the tutorial Thursday $6 / 25$

Last name:

First name:

ID number:

Note: You need to show all the steps and the reasoning in obtaining your answers in order to receive full marks.

1. [5 marks] Let $G=\left[\begin{array}{ccc}2 & 1 & 0 \\ 4 & 2 & 1 \\ 5 & 3 & 0\end{array}\right]$. Compute G^{-1}.
2. [4 marks] Let

$$
A=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
1 & 4 & 2 & 0 & 1 \\
2 & 3 & 5 & 1 & 2 \\
4 & 1 & 1 & 0 & 0 \\
5 & 0 & 1 & 0 & 0
\end{array}\right]
$$

Compute $\operatorname{det}(A)$. Hint: choose carefully the columns or rows to expand in order to reduce your work.
3. [5 marks] Let

$$
B=\left[\begin{array}{llll}
1 & 4 & 5 & 3 \\
0 & 2 & 3 & 3 \\
0 & 0 & 3 & 7 \\
0 & 0 & 0 & 4
\end{array}\right]
$$

Notice that B is upper-triangular (i.e. all elements below the diagonal are zero). Use the cofactor expansion of determinants to show (on this example) that the $\operatorname{det}(B)$ is simply the product of the diagonal elements of B.
4. For each of the following statements, either prove that it is true, or find a counterexample to prove that it is false.
(a) [3 marks] If A and B are $n \times n$ invertible matrices, then $A+B$ is also invertible.
(b) [3 marks] If A and B are $n \times n$ invertible matrices and $(A B)^{2}=A^{2} B^{2}$, then $A B=B A$.

