Math 115 Spring 2015: Assignment 5

Due: at the tutorial Thursday 6/11

Last name:
First name:

ID number:

Note: You need to show all the steps and the reasoning in obtaining your answers in order to receive full marks.

1. (a) [2 marks] Find a matrix $A \in \mathbb{R}^{2 \times 2}$ such that $\vec{y}=A \vec{x}$, where \vec{y} is \vec{x} rotated by an angle of $\frac{2}{3} \pi$ (counterclockwise around the origin), for any $\vec{x} \in \mathbb{R}^{2}$.
(b) [2 marks] Find a matrix $B \in \mathbb{R}^{2 \times 2}$ such that $\vec{z}=B \vec{y}$, where z_{1} is y_{1} scaled by a factor 3 and z_{2} is y_{2} scaled by a factor 2 , for any $\vec{y} \in \mathbb{R}^{2}$.
(c) [2 marks] Find a matrix $C \in \mathbb{R}^{2 \times 2}$ such that $\vec{w}=C \vec{z}$, where \vec{w} is \vec{z} rotated by an angle of $\frac{-2}{3} \pi$ (counterclockwise around the origin, i.e. $\frac{2}{3} \pi$ clockwise), for any $\vec{z} \in \mathbb{R}^{2}$.
(d) [2 marks] Find a matrix $G \in \mathbb{R}^{2 \times 2}$ such that $\vec{w}=G \vec{x}$, where \vec{w} is \vec{x} that is rotated by $\frac{2}{3} \pi$ and then scaled with factors 3 and 2 , and then rotated by $\frac{-2}{3} \pi$. Note that this amounts to performing on \vec{x} all three transformations found in points (a), (b) and (c), successively.
2. [3 marks] Find a matrix $A \in \mathbb{R}^{2 \times 2}$ that has no zero elements, such that $\vec{x}=A^{k} \vec{x}$. Note that $A^{k}=A \cdot A \cdots A$ where there are k factors A. For example $A^{3}=A \cdot A \cdot A$. Hint: Think about a geometric transformation that, when applied k times on the vector \vec{x}, gives back the vector \vec{x} itself. k may appear in some form in the matrix.
3. The matrix $A \in \mathbb{R}^{4 \times 7}$ and its reduced row echelon form B are given as follows:

$$
A=\left[\begin{array}{ccccccc}
1 & -3 & 0 & 1 & 4 & 1 & -5 \\
0 & 0 & -1 & 5 & -9 & -1 & 4 \\
3 & -9 & -1 & 8 & 3 & 1 & -5 \\
-1 & 3 & 1 & -6 & 5 & -1 & 7
\end{array}\right], \quad B=\left[\begin{array}{ccccccc}
1 & -3 & 0 & 1 & 4 & 0 & 1 \\
0 & 0 & 1 & -5 & 9 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 & 1 & -6 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) [2 marks] Determine a basis for the columnspace of A.
(b) [2 marks] Determine a basis for the rowspace of A.
(c) [5 marks] The set $S=\left\{x \in \mathbb{R}^{7} \mid A \vec{x}=\overrightarrow{0}\right\}$ is the set of all solutions to the system $A \vec{x}=\overrightarrow{0}$. This set S is a subspace. Determine a basis for S. Hint: Find the general solution to $A \vec{x}=\overrightarrow{0}$, and write it as a vector equation.

