Math 115 Spring 2015: Assignment 4

Due: at the tutorial Thursday $6 / 4$

Last name:

First name:

ID number:

Note: You need to show all the steps and the reasoning in obtaining your answers in order to receive full marks.

1. [5 marks] Let $A=\left[\begin{array}{rr}1 & 0 \\ 0 & -1 \\ 2 & 1\end{array}\right]$. Compute $A A^{T}$ and $A^{T} A$.
2. [5 marks] Given scalars $t_{1}, t_{2} \in \mathbb{R}$, find a matrix $A \in \mathbb{R}^{3 \times 3}$ such that $A \cdot\left[\begin{array}{c}x_{1} \\ x_{2} \\ 1\end{array}\right]=\left[\begin{array}{c}\left(x_{1}+t_{1}\right) \\ \left(x_{2}+t_{2}\right) \\ 1\end{array}\right]$, for all $x_{1}, x_{2} \in \mathbb{R}$. Note: The matrix must be the same for all values of x_{1} and x_{2}, but the scalars t_{1} and t_{2} are constant, so they may appear in A. Hint: Expand the product $A \vec{x}$ in function of the scalar elements of A and \vec{x}.
3. [5 marks] Given a vector $\vec{v} \in \mathbb{R}^{2}$, find a matrix $A \in \mathbb{R}^{2 \times 2}$ such that $A \cdot \vec{x}=\operatorname{proj}_{\vec{v}} \vec{x}$, for all $x \in \mathbb{R}^{2}$. Note: The matrix must be the same for all \vec{x}, but \vec{v} is constant, so v_{1} and v_{2} may appear in A. Hint: Expand $\operatorname{proj}_{\vec{v}} \vec{x}$ and the product $A \vec{x}$.
4. [5 marks] A matrix B is symmetric if $(B)_{i j}=(B)_{j i}$ for all i and j. Show that, for any matrix $A \in \mathbb{R}^{m \times n}$, the product $\left(A^{T} A\right)$ is (a) defined, (b) a square matrix, and (c) a symmetric matrix.
