
Discrete Optimization
TSP Project: Tools, Pointers and Reminders

November 20, 2011

1 Mathematical model

We are given a complete graph G(V,E) with vertices V . We denote the edge set E = E(V). We formulate
the TSP with edge costs c using subtour elimination constraints:

min
∑
e∈E

cexe

s.t. x ∈ Psub

(TSP)

with
Psub :=

{
x ∈ {0, 1}|E| :

∑
e∈δ(i)

xe = 2 ∀i ∈ V∑
e∈E(S)

xe ≤ |S| − 1 ∀S ⊆ V : 1 ≤ |S| ≤ |V | − 1
}
.

Alternatively, one can use the equivalent Pcut as a feasible region, with

Pcut :=
{
x ∈ {0, 1}|E| :

∑
e∈δ(i)

xe = 2 ∀i ∈ V∑
e∈δ(S)

xe ≥ 2 ∀S ⊆ V : 1 ≤ |S| ≤ |V | − 1
}
.

If n = |V | is the number of vertices of the considered graph, we have |E| = 1
2n(n − 1) edges, n degree

constraints and 2n − 2(n− 1) subtour elimination (or cutset) constraints.

The only necessary data are n and the cost vector c. We will work with standard TspLib instances
(http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/).

2 Solver components

2.1 LP

We need to be able to optimize over the linear relaxation of Psub. This could be done by standard linear
programming techniques. However, since the number of subtour elimination constraints involved can
quickly grow huge with increasing n, we should not include them all. Instead, we should iteratively add
some of them (violated ones), until we obtain a solution that provably satisfies all.

2.2 Branch and Bound

Given a solver that can compute the optimal solution of the linear relaxation of (TSP), we now need to
perform branch and bound in order to obtain an integer solution.

1

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

2.3 Primal Heuristics

Primal heuristics will help us obtain good integer feasible solutions for (TSP), thus providing good primal
bounds to the branch and bound.

2.4 Cuts

Specific valid inequalities can be generated for (TSP) in order to strengthen the linear relaxation of Psub.

3 Implementation

We provide you with a reference interface to ease interaction between the different components. You can
find its source code on http://www.montefiore.ulg.ac.be/~poirrier/discrete.php.

3.1 Classes

TSPModel contains the cost vector c of a TSP instance. This vector has one entry for each edge of the
complete graph, and entries are kept symmetric, i.e. if you assign a value to cij it will be assigned to cji
too. Useful methods:

Construction/destruction/assignment
TSPModel() Create a zero-sized c
TSPModel(int n) Create an uninitialized vector c for a n-vertices graph;

vector size is the number of edges, i.e. 1
2n(n− 1))

TSPModel(TSPModel &) Copy constructor
operator=(TSPModel &) Assignment operator

Inherited from EdgeData<double>
clear() Reset size to zero
resize(int n) Resize c for a n-vertices graph (size 1

2n(n− 1))
elements are left uninitialized

int vertices() Return n, the number of vertices of the graph
int edges() Return the number of edges of the complete graph
set(double v) Set all elements of c to value v
set(int i, int j, double v) Set element cij to value v
double get(int i, int j) Get value of element cij
double &operator() (int i, int j) Lets you access element cij by writing c(i, j)
double operator*(TSPSolution &) Lets you compute cTx by writing c * x

TSPSolution contains a solution vector x for a TSP instance. This vector has one entry for each edge
of the complete graph, and entries are kept symmetric, i.e. if you assign a value to xij it will be assigned
to xji too. Useful methods:

2

http://www.montefiore.ulg.ac.be/~poirrier/discrete.php

Construction/destruction/assignment
TSPSolution() Create a zero-sized x
TSPSolution(int n) Create an uninitialized vector x for a n-vertices graph;

vector size is the number of edges, i.e. 1
2n(n− 1))

TSPSolution(TSPSolution &) Copy constructor
operator=(TSPSolution &) Assignment operator

Inherited from EdgeData<double>
clear() Reset size to zero
resize(int n) Resize x for a n-vertices graph (size 1

2n(n− 1))
elements are left uninitialized

int vertices() Return n, the number of vertices of the graph
int edges() Return the number of edges of the complete graph
set(double v) Set all elements of x to value v
set(int i, int j, double v) Set element xij to value v
double get(int i, int j) Get value of element xij
double &operator() (int i, int j) Lets you access element xij by writing x(i, j)
double operator*(TSPModel &) Lets you compute cTx by writing x * c

Solution properties
double getCost(TSPModel &) Return cTx
bool isIntegral() Inspects the solution and returns true if it is integral
bool isIntegral(int i, int j) Return true if xij is integral
setFeasible(bool feas) Sets the feasibility flag used to mark a problem as (in)feasible
isFeasible() Fetches the feasibility flag

TSPFixing describes a fixing, i.e. the fact that some variables xe should be fixed to a constant value
x̄e ∈ {0, 1}. Note that the constant value can not be fractional. A fixing has as many components as there
are edges of the complete graph, and entries are kept symmetric, i.e. fixing the value of xij is equivalent
to fixing the value of xji. Empty (i.e. zero-sized) fixings have a special meaning: they correspond to no
variable being fixed, whatever the graph size. Useful methods:

Construction/destruction/assignment
TSPFixing() Create a zero-sized fixing
TSPFixing(int n) Create an uninitialized fixing for a n-vertices graph;

fixing size is the number of edges, i.e. 1
2n(n− 1))

TSPFixing(TSPFixing &) Copy constructor
operator=(TSPFixing &) Assignment operator

Inherited from EdgeData<char>
clear() Reset size to zero
resize(int n) Resize the fixing for a n-vertices graph (size 1

2n(n− 1))
elements are left uninitialized

int vertices() Return n, the number of vertices of the graph
int edges() Return the number of edges of the complete graph

Fixing attributes
unfix() Unfix all variables
unfix(int i, int j) Unfix xij
fix(int i, int j, double v) Fix xij to v ∈ {0, 1}
bool empty() Return true if the fixing is zero-sized
bool isFixed(int i, int j) Return true if xij should be fixed
double fixedValue(int i, int j) Return x̄ij ∈ {0, 1}

3

TSPCut describes an inequality of the form αTx ≥ β for a TSP formulation. More precisely, it contains
the coefficients vector α, which has one entry per edge of the complete graph. Whether you consider xij
with i < j or i > j does not matter: the values of αij and αji are internally mapped to the same element.
Useful methods:

Construction/destruction/assignment
TSPCut() Create a zero-sized x
TSPCut(int n) Create an uninitialized vector α for a n-vertices graph;

vector size is the number of edges, i.e. 1
2n(n− 1))

TSPCut(TSPCut &) Copy constructor
operator=(TSPCut &) Assignment operator

Inherited from EdgeData<double>
clear() Reset size to zero
resize(int n) Resize α for a n-vertices graph (size 1

2n(n− 1))
elements are left uninitialized

int vertices() Return n, the number of vertices of the graph
int edges() Return the number of edges of the complete graph
set(double v) Set all elements of α to value v
set(int i, int j, double v) Set element αij to value v
double get(int i, int j) Get value of element αij
double &operator() (int i, int j) Lets you access element αij by writing alpha(i, j)
double operator*(TSPSolution &) Lets you compute αTx by writing alpha * x

Other cut fields
setSense(char sense) Set cut sense: ’E’ for =, ’G’ for ≥, ’L’ for ≤
char getSense(char sense) Get cut sense (’E’ for =, ’G’ for ≥, ’L’ for ≤)
setRHS(double beta) Set the right-hand-side β
double getRHS() Get the right-hand-side β
double slack(TSPSolution &x) Compute the slack of the inequality evaluated at x:

≥ 0 for a verified inequality, < 0 for a violated one

TSPCutPool is an STL list of TSPCuts. It is defined as follows: typedef std::list<TSPCut> TSPCutPool;
See the documentation of the Standard Template Library on std::list for more details.

3.2 Classes internal details

The subclasses TSPModel, TSPSolution, TSPFixing and TSPCut all inherit from a specialization of the
template class EdgeData, which is a container type for edge data as addressed by adjacent vertices. The
data are symmetric: they can be addressed equivalently as (i, j) or (j, i). The diagonal elements (i, i)
shall not be addressed: the methods will abort (an assertion will fail) on any attempt to addressing
out-of-range or diagonal elements. The template specialization specifies the data type. All subclasses
also provide an assignment operator from the corresponding EdgeData specialization, for ease of type
conversion. Specializations provided include EdgeData<double>, EdgeData<char> and EdgeData<int>.
Method definition should be transferred to the header file if more are needed.

3.3 TSPFile parser

A parser is provided for reading data from the TspLib. It can both read instance description (i.e. .tsp
files containing the c vector) or tour description (i.e. .tour files containing a solution vector x).

4

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

TSPFile methods
TSPFile() Create an empty TSPFile structure
TSPFile(std::string &path) Create a TSPFile structure and load a file
clear() Clear all the public fields
int load(std::string &path) Load a file, returning zero in case of success

TSPFile public fields
int n Number of vertices
std::string name Instance name
EdgeData<double> edge Instance (c) or tour (x) description
std::vector<TSPCoord> vertex For displaying purposes, this field contains coordinates

for the vertices, if available
TSPFixing forced A fixing can be provided in the description, forcing

(non-)inclusion of specific edges (only one file in the
TspLib: linhp318.tsp)

The load() method actually takes a second argument of type int specifying the maximal accepted
number of nodes, which defaults to 1000. This is to safeguard against accidentally loading huge instances
into memory, which could lead to heavy swapping and temporarily freeze the machine.

As noted before, appropriate assignment operators are provided for subclasses of EdgeData, allowing for
the following:

TSPFile parseTSP("problem.tsp");
TSPFile parseTour("problem.opt.tour");

TSPModel c = parseTSP.edge;
TSPSolution x = parseTour.edge;

3.4 CPLEX

We will make use of an external solver for the linear programming problems arising in our different
components. The Cplex solver is installed on the machine made available to you. A copy of its docu-
mentation is available at http://thales02.montefiore.ulg.ac.be/cplex/. The use of the default C
API “Cplex Callable Library” is advised (though not mandated) over its C++ counterpart.

3.5 Interface for the LP component

The LP component should implement two interface classes, LPSolver and LPNode. The LPSolver class
holds all data that should be global to the solving process of the instance. It has the following public
methods:

class LPSolver {
public:

LPSolver(const EdgeData<double> &c);
~LPSolver();

};

The LPNode class holds local data for one LP resolution. Its constructor shall be provided with a reference
to the global LPSolver data. In addition, a reference to the LPNode object corresponding to the parent

5

http://thales02.montefiore.ulg.ac.be/cplex/

node should be passed, except if no such parent exists (e.g. at root node). The class features the following
public methods:

class LPNode {
public:

LPNode(LPSolver &solver);
LPNode(LPSolver &solver, const LPNode &parent);
LPNode(const LPNode &node);

bool solve(const TSPFixing &fix, const TSPCutPool &pool,
TSPSolution &x, int maxIter = 0);

bool solve(const EdgeData<double> &c,
const TSPFixing &fix, const TSPCutPool &pool,
TSPSolution &x, int maxIter = 0);

};

The bulk of the work is performed by the solve() method which computes an LP solution x. The five-
arguments form of solve() lets us override the default cost vector c provided to the LPSolver object.
The return value is true if the a result was found before the iteration limit. If maxIter == 0, then there
is no iteration limit and the return value is always true. If the problem is infeasible, the corresponding
flag is set accordingly in the TSPSolution (and the return value is still true).

3.6 Interface for the branch and bound component

The branch and bound component should implement the main function:

int main(int argc, char **argv, char **envp);

3.7 Interface for the heuristics component

The heuristics component implements a TSPHeuristics class having the following public methods:

class TSPHeuristics {
public:

TSPHeuristics(const EdgeData<double> &c);
~TSPHeuristics();

bool get(const TSPFixing &fix, TSPSolution &x);

void addIP(const TSPSolution &incumbent);
void addLP(const TSPSolution &x);

};

The most important method is get() providing a heuristic integer feasible solution. Its return value is
true in case of success. The TSPFixing argument is only indicative and provides information about the
current node.

The methods addIP() and addLP() lets us provide the heuristics with more information. When the
branch and bound finds an integer feasible solution, it can notice the heuristics using addIP(). It can
also provide the heuristics with the current fractional solution using addLP(). This information may be
discarded.

6

3.8 Interface for the cut generator component

The cut generator implements the TSPCutGenerator class with the following public methods:

class TSPCutGenerator {
public:

TSPCutGenerator(const EdgeData<double> &c);
~TSPCutGenerator();

int get(const TSPFixing &fix, const TSPSolution &x, TSPCutPool &cuts);
};

The get() method adds valid inequalities to the TSPCutPool object. The return value is the number of
such added cuts. The inequalities need only be valid when the variables are fixed as indicated by the
TSPFixing object. To obtain globally-valid inequalities, one should call the get() method with an empty
fixing argument. The TSPSolution x indicates the current LP fractional solution.

7

	Mathematical model
	Solver components
	LP
	Branch and Bound
	Primal Heuristics
	Cuts

	Implementation
	Classes
	Classes internal details
	TSPFile parser
	CPLEX
	Interface for the LP component
	Interface for the branch and bound component
	Interface for the heuristics component
	Interface for the cut generator component

