Elementary Probability Theory

An online chapter by D. Forsyth and J. Ponce

Justus H Piater

Computing with uncertainty

• If a flipped coin has come up heads 8 times and tails 6 times, what do I think will come up at the next flip?
• If 2/3 of my background pixels are black and the others are white, and if this relationship is reversed for foreground pixels, and if 5% of my pixels typically belong to the foreground, how certain can I be that a given, white pixel belongs to the foreground?
• Given a set of object categories with associated appearance vectors, which category has most likely produced a given, previously unseen vector?
• How likely will it rain tomorrow?
• How likely was there life on Mars a billion years ago?
What does probability mean?

Frequentist probability
limit of relative frequency
in a large number of trials
events only
hypothesis testing

Bayesian probability
degree of belief in a
proposition
arbitrary statements
degree of belief that can
be inferred/updated in the
light of new evidence

Let’s not worry about this debate. We’ll use probability theory because it is useful.
Experiments and outcomes

Example 1. A single coin flip
• The space of potential outcomes: $\Omega = \{h, t\}$
• A space of events: $\mathcal{F} = \{\emptyset, \Omega, \{h\}, \{t\}\}$

Example 2. Two coin flips
$\Omega = \{hh, ht, th, tt\}$
$\mathcal{F} = \mathcal{P}(\Omega)$

Example 3. Second coin flip unobservable
$\mathcal{F} = \{\emptyset, \Omega, \{hh, ht\}, \{th, tt\}\}$

Quick-Thinks

• Define the event space \mathcal{F} representing the notion that the first coin flip is unobservable.
• In the case of Example 2, what is the event that either both heads or both tails occurred?
• Define the event space \mathcal{F} that contains the events “both heads”, “both tails”, “coins the same”, “coins different”, “not both heads”, “not both tails”.
• Is $\mathcal{F} = \{\emptyset, \Omega, \{hh, ht\}\}$ a reasonable event space?
Events

Sample space Ω, the set of possible outcomes. Event space \mathcal{F}, the set of possible events (subsets of Ω):

$\emptyset \in \mathcal{F}$

$S_1 \in \mathcal{F} \Rightarrow \bar{S_1} = \Omega - S_1 \in \mathcal{F}$

countable $S_i \in \mathcal{F} \Rightarrow \bigcup_i S_i \in \mathcal{F}$

(These define a so-called σ-algebra.) It follows (from De Morgan’s laws):

$\Omega \in \mathcal{F}$

countable $S_i \in \mathcal{F} \Rightarrow \bigcap_i S_i \in \mathcal{F}$

Probability

A probability measure is a function $P : \mathcal{F} \rightarrow \mathbb{R}$ that satisfies the following three axioms:

$P(A) \geq 0$

$P(\Omega) = 1$

$P(A \cap B) = 0 \Rightarrow P(A \cup B) = P(A) + P(B)$

It follows:

$P(\bar{A}) = 1 - P(A)$, $P(\emptyset) = 0$

$0 \leq P(A) \leq 1$ for any A

if $A \subset B$, then $P(A) \leq P(B)$

$P(A \cup B) = P(A) + P(B) - P(A \cap B)$

We call (Ω, \mathcal{F}, P) a probability model. $P(A \cap B)$ is usually written $P(A, B)$, and is called the joint probability of the events A and B.
Quick-Thinks

- Give a probability model for Example 1.
- Give a probability model for Example 3.
- Give a probability model for Example 2.

If we already know something about the event?

Given the event space
$$\mathcal{F} = \{\emptyset, \Omega, \{hh\}, \{tt\}, \{hh, tt\}, \{ht, th\}, \{ht, th, tt\}\},$$
say, we know that \(A = \{ht, th, tt\} \in \mathcal{F}\) has happened.

This defines \(\textit{by intersecting the events } B \in \mathcal{F} \textit{ with } A\) a new event space
$$\mathcal{F}_A = \{\emptyset, A, \{tt\}, \{ht, th\}\}$$
that satisfies the event axioms [7].

The probabilities of the events \(B_A \in \mathcal{F}_A\) can be defined in terms of their counterparts \(B \in \mathcal{F}\) as
$$P_A(B_A) = \frac{P(B \cap A)}{P(A)}$$
(verify!).
Conditional Probability

What is the probability that event B occurs, given that event A has occurred?

$$P(B \mid A) = \frac{P(B \cap A)}{P(A)}$$

$$P(B, A) = P(B \mid A)P(A) = P(A \mid B)P(B)$$

- We require $P(A) \neq 0$.
- Set-size analogy: $P(B \mid A)$ measures the size of $B \cap A$ relative to A.
- This is symmetric.

- For disjoint sets A_i with $\Omega = \bigcup A_i$, we define likewise

$$P(B) = P(B \mid \Omega) = \sum_i P(B \mid A_i)P(A_i) = \sum_i P(B, A_i)$$

Conditional Probability (Continued)

The operation on the right is called *marginalization*.
Quick-Think

Illustrate

\[P(B) = P(B \mid \Omega) = \sum_i P(B \mid A_i)P(A_i) = \sum_i P(B, A_i) \]

on \(\mathcal{F} = \{ \emptyset, \Omega, \{hh\}, \{tt\}, \{hh, tt\}, \{ht, th\}, \{ht, th, tt\}, \{hh, ht, th\} \} \)

with

\[A_1 = \{hh\} \]
\[A_2 = \{tt\} \]
\[A_3 = \{ht, th\} \]
\[B = \{hh, tt\} \]

Independence

If events \(A \) and \(B \) are independent, then

\[P(A \mid B) = P(A) \]
\[P(B \mid A) = P(B) \]
\[P(A, B) = P(A \mid B)P(B) = P(A)P(B) \]

We say that \(P(A, B) \) factors into \(P(A) \) and \(P(B) \).

Note

This can drastically reduce the number of degrees of freedom of a model.
For the two-coin-flip example
\[\Omega = \{ hh, ht, th, tt \} \]
\[F = 2^\Omega \]
give two joint probability models \(P(A, B) \) in terms of the outcomes of the first and the second coin flip:
- one where the probabilities of the outcomes of the second flip may depend on the outcome of the first flip,
- one where they do not.
How many degrees of freedom does each of the models have?

Conditional Independence

A and \(B \) are conditionally independent given \(C \) iff
\[P(A, B | C) = P(A | C)P(B | C) \]

Here, \(P(A, B | C) \) factors in the way indicated.

Example 4.
Assume \(A, B \) and \(C \) contain 2, 3, and 4 different possible outcomes, respectively.
- How many degrees of freedom does \(P(A, B, C) \) generally have?
- How many degrees of freedom does \(P(A | C)P(B | C)P(C) \) have?
Grounding probabilities in frequencies

Frequency data can be converted to P functions that satisfy the axioms.
See some examples.
In general, if $P(\text{heads}) = p$:

$$P(k \text{ heads in } n \text{ flips}) = \binom{n}{k} p^k (1 - p)^{n-k}$$

This is, by the way, the **binomial distribution**.
Subjective probabilities

What is the probability that it will rain tomorrow?
What is the probability that an unknown coin will come up heads?
What is the probability that a given coin will land on its edge and stand there?

Note

• Often, these can (in principle) be reduced to frequentist probabilities.
• Even frequentist probability models usually require the modeler to pull some parameters out of the sleeve.
Continuous Spaces: Mostly the same thing.

- Events
- Probability
- Conditional probability and marginalization
- Sums become integrals.
- Independence
- Conditional independence

Example 5. Drawing real numbers from [0, 1]

- What is \(P(a) \)?
- What is \(P([0, \frac{1}{2}]) \)?
- What is \(P([0, 1]) \)?
Probability Density Functions

We can no longer enumerate the events and assign a probability to each of them. We will instead assign probabilities to subsets of Ω by integrating probability density functions p over them:

$$P(\text{event}) = \int_{\text{event}} p(u) \, du$$

$$p(u_1) \, du = P(\{u \in [u_1, u_1 + du]\})$$

A PDF is nonnegative, but can exceed unity, and $P(\Omega) = \int_{\Omega} p(u) \, du = 1$.

It follows that $P(A) = 0$ for any finite set A.

Note

This works for sample spaces Ω of any dimensionality.

Quick-Think

Give a probability density function for Example 5.
Marginalization

Example 6. Drawing vectors of real numbers from $[0, 1] \times [0, 1]$

The probability density at the first element equal to u is

$$p(u) = \int_0^1 p(u, v) \, dv$$
Random Variables

A **random variable** is a function from a sample space Ω to a **state space** (typically \mathbb{R}^n).

Thus, given a **probability model** (Ω, \mathcal{F}, P), a random variable ξ induces a new probability model $(\Omega', \mathcal{F}', P)$, where, for each $A \in \mathcal{F}$ and corresponding $A' \in \mathcal{F}'$, $P(\{\xi \in A' \mid \xi \in A\}) = P(A)$.

The inherited probability measure P (defined on a state space instead of the sample space) is called a **probability distribution**.

Examples:
- The identity function.
- The *income* from a coin-flip gamble.

Expectations

The **expected value** (or **expectation**) of a real-valued (discrete or continuous) random variable X is:

$$E[X] = \sum_x x P(x)$$

$$E[X] = \int_{\Omega} x p(x) \, dx$$

The **variance** of a random variable is

$$\text{var}(X) = E[X^2] - E[X]^2$$, where $E[f(X)] = \sum_i f(x_i) P(x_i)$ or

$$E[f(X)] = \int_{\Omega} f(x) p(x) \, dx$$.

The **covariance** matrix of a vector of random variables is

Quick-Think

What are the expectation and variance of the income from gambling on a single coin flip [27], using a fair coin and a bet of 1 €?

Marginalization

Example 7. Two types of coins

Assume we have two types of coins, one balanced and one biased. What is the probability of observing heads?

\[
\Omega = \{ \text{heads}, \text{tails} \}
\]

\[
P(\text{heads}) = P(\{\text{heads}\}) + P(\{\text{tails}\})
\]

\[
P(\text{heads}) = P(\{\text{heads}\}) + P(\{\text{tails}\})
\]

Marginalization in general:

\[
p(x_1, ..., x_n) = \sum_{x_1} p(x_1, x_2, ..., x_n)
\]

\[
p(x_1, ..., x_n) = \int_{x_1} p(x_1, x_2, ..., x_n) dx_1
\]
Some Popular Distributions and Densities

Uniform density/distribution: Not meaningful in infinite domains.

Binomial distribution: \(n \) i.i.d. samples from a distribution with two values will contain \(k \) instances of the first value with probability \(P(k) = \binom{n}{k} p^k (1-p)^{n-k} \), where the first value is drawn with probability \(p \). The mean value of \(k \) is \(np \), its variance \(np(1-p) \) (example [17]).

Poisson distribution: Typically, uniform spatial or temporal models. A Poisson process produces \(k \) events per unit interval with probability \(P(k) = \frac{\lambda^k e^{-\lambda}}{k!} \). The mean and variance of the number of events per unit interval are equal to \(\lambda \).
The Normal (or Gaussian) Distribution

\[p(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2} \right) \]

\[p(x; \mu, \Sigma) = \frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu) \right) \]

This distribution is important in theory and in practice:

- **The Central Limit Theorem**: The sum of any i.i.d. random variables of finite variance tends toward a normal distribution (which may justify Gaussian noise models).
- Many (noise) effects observed in practice are reasonably well modeled by a normal distribution.
- Functions of the exponential family are easily manipulated.

Probabilistic Inference
Maximum-Likelihood Estimation

Maximum likelihood (ML) estimation:
\[\arg\max P(\text{data} | \text{parameters}) \]

Example 8. Inferring the type of a coin.
Assume we have two types of coins with \(P(\text{H} | \lambda) = \lambda_1 \) and \(P(\text{H} | \lambda) = \lambda_2 \).
Given \(n \) independent flips \(r_i \) of an unknown coin, we conclude that it is of the type \(t \) that maximizes \(\prod_{i=1}^{n} P(r_i | t) \).

Priors, Posteriors and Bayes’ Rule

What if Type-II coins are really rare? Shouldn’t we multiply the above term by \(P(t) \)?
From \(P(A, B) = P(A | B)P(B) = P(B | A)P(A) \) follows **Bayes’ Rule**:
\[P(B | A) = \frac{P(A | B)P(B)}{P(A)} \]
This is useful for
- reversing the order in a conditional probability
- adding evidence to a belief (\(P(B) \) is the \textit{prior}, \(P(B | A) \) is the \textit{posterior})
Bayesian Inference

Maximum a-posteriori (MAP) estimation:
\[\text{argmax} P(\text{parameters} \mid \text{data}) \]
This is typically computed using Bayes’ Rule.

Note
If the prior is uniform, MAP estimation reduces to ML estimation.
Instead of just the MAP estimate, we may be interested in the whole posterior.

Quick-Think

Example 9. Estimating the parameter of a coin from a sequence of flips

Our coin comes up heads with probability \(\lambda \), i.e.,
\[P(\text{heads} \mid \lambda) = \lambda. \]
Our prior is \(p(\lambda) = 1. \)

- What is \(p(\lambda \mid \text{hh}) \)?
- By an analogous argument,
 \[p(\lambda \mid k \text{ heads and } n-k \text{ tails}) \propto \lambda^k(1-\lambda)^{1-k}. \]
50 Percent Heads

20 Percent Heads
No Heads

![Graph showing probability density for different scenarios of heads in coin flips.]

Model Selection

\[P(\text{model} | \text{data}) = \frac{P(\text{data} | \text{model}) P(\text{model})}{P(\text{data})} \]

\[= \frac{\int P(\text{data} | \text{model}, \text{params}) P(\text{params}) \, d\text{params}}{P(\text{data})} \]

\[\propto \int P(\text{data} | \text{model}, \text{params}) P(\text{params}) \, d\text{params} \]