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Abstract. We propose an unsupervised, probabilistic method for learning visual
feature hierarchies. Starting from local, low-level features computed at interest
point locations, the method combines these primitives into high-level abstrac-
tions. Our appearance-based learning method uses local statistical analysis be-
tween features and Expectation-Maximization to identify and code spatial corre-
lations. Spatial correlation is asserted when two features tend to occur at the same
relative position of each other. This learning scheme results in a graphical model
that constitutes a probabilistic representation of a flexible visual feature hierar-
chy. For feature detection, evidence is propagated using Belief Propagation. Each
message is represented by a Gaussian mixture where each component represents
a possible location of the feature. In experiments, the proposed approach demon-
strates efficient learning and robust detection of object models in the presence of
clutter and occlusion and under view point changes.

1 Introduction

The visual feature representation is one of the most important issues for learning and
recognition applications in computer vision. In the present work, we propose a new ap-
proach to representing and learning visual feature hierarchies in an unsupervised man-
ner. Our hierarchical representation is inspired by the compositional nature of objects.
Most objects encountered in the world, which can be either man-made or natural ob-
jects, are composed of a number of distinct constituent parts (e.g., a face contains a nose
and two eyes, a phone possesses a keypad). If we examine these parts, it becomes ob-
vious that they are in turn recursively composed of other subparts (e.g., an eye contains
an iris and eyelashes, a keypad is composed of buttons). This ubiquitous observation
constitutes our main motivation for arguing that a hierarchical representation must be
taken into account to model objects in more flexible and realistic way.

Our long-term goal is thus to learn visual feature hierarchies that correspond to ob-
ject/part hierarchies. The development of a hierarchical and probabilistic framework
that is tractable is terms of complexity is a central problem for many computer vision
applications such as visual tracking, object recognition and categorization, face recog-
nition, stereo matching and image retrieval.
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In this paper, we combine the approaches of local, appearance-based feature de-
tection and unsupervised model learning in a new visual feature recognition scheme.
The principal objective is to obtain a probabilistic framework that allows the organi-
zation of complex visual feature models. The main idea is to use a graphical model to
represent the hierarchical feature structure. In this representation, which is detailed in
Section 2, the nodes correspond to the visual features. The edges model both the spatial
arrangement and the statistical dependence between nodes. The formulation in terms of
graphical models is attractive because it provides a statistical model of the variability
of shape and appearance. The shape and appearance models are specified separately by
the edges and the leaf nodes of the graph, respectively.

An unsupervised feature learning method that allows the construction of a hierar-
chy of visual features is introduced in Section 4. The proposed framework accumulates
statistical evidence from feature observations in order to find conspicuous coincidences
of visual feature co-occurrences. The structure of the graph is iteratively built by com-
bining correlated features into higher-level abstractions. Our learning method is best
explained by first presenting the detection process, which is described in Section 3.
During detection, our scheme starts by computing local, low-level features at interest
point locations. These features serve to annotate the observable leaf nodes of the graph.
Then, at the second step, Belief Propagation [9], a message-passing algorithm, is used
to propagate the observations up the graph, thus inferring the belief associated with
higher-level features that are not directly observable. The functioning and the efficacy
of our method are illustrated in Section 5. Finally, Section 6 provides a discussion of
related work.

2 Representation

In this section, we introduce a new part-based and probabilistic representation of visual
features (Figure 1). In the proposed graphical model, nodes represent visual features
and are annotated with the detection information for a given scene. The edges represent
two types of information: the relative spatial arrangement between features, and their
hierarchical composition. We employ the term visual feature in two distinct contexts:

Primitive visual features are low-level features. They are represented by a local de-
scriptor. For this work, we used simple descriptors constructed from normalized
pixel values and located at Harris interest points [4], but our system does not rely
on any particular feature detector. Any other feature detector [7] can be used to
detect and extract more robust information.

Compound visual features consist of flexible geometrical combinations of other sub-
features (primitive or compound features).

Formally, our graph G is a mathematical object made up of two sets: a vertex set V , and
a directed edge set −→E . For any node s ∈ V , the set of parents and the set of children are
respectively defined as U(s) = {ui ∈ V|(ui, s) ∈

−→E } and C(s) = {ci ∈ V|(s, ci) ∈−→E }. Information about feature types and their specific occurrences in an image will be
represented in the graph by annotations of vertices and edges, as described next.
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Fig. 1. Object part decomposition (left) and corresponding graphical model (right).

2.1 The Vertex Set

The vertices s ∈ V of the graph represent features. They contain the feature activations
for a given image. Our graphical model associates each node with a hidden random
variable x ∈ R2 representing the spatial probability distribution of the feature in the
image. This random variable is continuous and defined in a two-dimensional space,
where the dimensions X ,Y are the location in the image. For simplicity, we assume
that the distribution of x can be approximated by a Gaussian mixture. In order to retain
information about feature orientation, we associate a mean orientation θi ∈ [0, 2π[ to
each component of the Gaussian mixture. Primitive feature classes lie at the first level
of the graph. They are represented by a local descriptor and are associated with an
observable random variable y, defined in the same two-dimensional space as the hidden
variables x, and are likewise approximated by a Gaussian mixture.

2.2 The Edge Set

An edge e ∈ −→E of the graph models two aspects of the feature structure. First, when-
ever an edge links two features it signifies that the destination feature is a part of the
source feature. Since the observation of a part may have more or less impact on the per-
ceived presence of a compound feature, we use a parameter bxu

xc
to quantify the relative

contribution of the subfeature xc to the presence of the parent feature xu.
Second, an edge describes the spatial relation between the compound feature and

its subfeature in terms of the distance and the relative orientation of the subfeature with
respect to the compound feature. The shape uncertainty is represented by a Gaussian
probability density that models the relative position of one feature versus the other.
This Gaussian, which is described by a relative location and a covariance matrix Σ,
allows us to deal with deformable features and offers invariance properties.

The annotation associated with an edge, {xc, xu, d, θr, Σ, b
xu
xc
}, describes both the

geometric relation (distance d, relative orientation θr) between two feature classes and
the combination coefficient bxu

xc
. It does not contain any specific information about a

given scene but represents a static view of the feature hierarchy and shape.



3 Feature Detection

In the preceding section, we defined the structure of our graphical model used to repre-
sent visual features. We now turn to the detection of a given visual feature in an image,
given its graphical-model representation. The goal of the feature detection process is
to estimate the probability density function p̂(x|y) of features given the primitives de-
tected in the image. The detection process can be summarized by two steps. First, we
use the primitives of a scene to instantiate the observed variables y in the graph. Second,
we apply Belief Propagation to infer the probability densities of the hidden variables.

3.1 Primitive Detection

Primitive detection matches the detected local descriptors in an image with the most
similar existing feature descriptor at the leaf nodes of the available graphs. We use the
observed descriptor parameters (location, orientation, similarity) to annotate the vari-
able ys of the corresponding node s ∈ V . This observed variable ys represents the
degree of presence of the observed primitive feature, and is modeled by a Gaussian
mixture. Each component Gaussian represents a possible location of the feature and
is set to the detected descriptor location. The weight wi of a component is inversely
proportional to the Mahalanobis distance between the observed descriptor and the most
similar feature class. The orientation of the feature is determined from the correspond-
ing descriptor orientation, and is associated to each Gaussian. In summary, each com-
ponent of an observed random variable ys is defined by a location αi, a weight wi and
an orientation θi that are determined by the detected descriptor occurrences.

3.2 Compound Feature Detection

The detection process that computes the presence of high-level features is based on Be-
lief Propagation (BP) [9]. To initialize the graph, we annotate the observed variables
with the detected primitives (Section 3.1). Then the main idea of this inference algo-
rithm is to propagate information by successively transmitting upward (λ) and down-
ward (π) messages in the graph. The λ-messages represent the possible presence of
a parent feature, given the presence information of the current node. Similarly, each
π-message represents the location of a node with respect to its parent nodes.

In our representation, evidence is incorporated exclusively via the variables yi rep-
resenting primitives at the leaves of the graph. Higher-level features are not directly
observable. Thus, the standard BP algorithm can be simplified to a single upward prop-
agation step where it successively estimates the probability of each node, going from the
leaves to the root of the graph. This procedure is implemented by the following update
rule that links each variable x of our graphical model to its child nodes ci ∈ C(x):

x = bxc1
ϑ(c1) + bxc2

ϑ(c2) + · · ·+ bxcn
ϑ(cn) (1)

where bxci
is the combination coefficient of node ci. The location and the orientation be-

tween a compound feature and a subfeature may be different. We therefore introduce a



linear function ϑ that performs a spatial transformation. It translates the probability den-
sity of each variable ci according to the direction and the distance of the corresponding
edge e(x, ci).

J. Pearl demonstrated that BP converges to the optimal solution on tree-structured
graphical models, while our graph may contain loops. However, BP has been shown
empirically to provide good approximate solutions on a variety of loopy graphs.

As we explained in Section 2.1, our representation models nodes as continuous ran-
dom variables approximated by mixtures of Gaussians. Likewise, the estimation of the
conditional probability density of a node will take the form of a mixture of Gaussians
p̂(x|y) =

∑N
i=1 wx(i)G(x;µx(i), Σx(i)), where µx, Σx, wx are respectively vectors of

mean, covariance and weight. They are computed by combining the belief obtained at
the child nodes (Eq. 2). For simplicity of notation, the following formulas are given for
child nodes ci composed of a single Gaussian (the case of mixtures is analogous).

µx =
∑Nc

i=1 µ
ϑ
ci
Σci∑Nc

i=1Σci

Σx =

(
Nc∑
i=1

1
Σci

)−1

µϑ
ci

= bxci
ϑ(ci) (2)

Feature Orientation In order to estimate the most likely orientation of a feature,
we use the orientations associated to each component of the current Gaussian mix-
ture. We compute the mean orientation θx(l) of mixture components weighted by their
corresponding weights wi: tan θx(l) = Sx(l)

Cx(l) where Cx(l) =
∑n

i=1 viwi cos θi and
Sx(l) =

∑n
i=1 viwi sin θi. In these equations, l is a location in the image, θi is the main

orientation of component xi, n is the number of components and vi = R(l, xi) is the
response of Gaussian component xi at point l.

4 Visual Feature Learning

In this section, we introduce our unsupervised feature learning method that allows the
construction of a hierarchy of visual features. The general idea of our algorithm is to ac-
cumulate statistical evidence from the relative positions of observed features in order to
find frequent visual feature co-occurrences. The structure of our graphical model is iter-
atively built by combining correlated features into new visual feature abstractions. First,
the learning process votes to accumulate information on the relative position of features
and it extracts the feature pairs that tend to be located in the same neighborhood. Sec-
ondly, it estimates the parameters of the geometrical relations using either Expectation-
Maximization (EM) or a voting scheme. It finally creates new feature nodes in the graph
by combining spatially correlated features. In the following sections, we describe the
three main steps of this unsupervised learning procedure.

4.1 Spatial Correlation

The objective of this first step of our learning process is to find spatially correlated
features. A spatial correlation exists between two features if they are often detected
in the same neighborhood. Co-occurrence statistics are collected from multiple feature



occurrences within one or across many different images. The procedure to find corre-
lated features is summarized in Algorithm 1. After its completion, we obtain a vote
array S concerning the relative locations of correlated features. Before the first iteration
we apply K-means clustering algorithm to the set of feature descriptors. This identifies
primitive classes from the training set and is used to create the first level of the graph.

Algorithm 1 Detection of Spatial Correlations
Successively extract each image I from the training set
Detect all features fI = {fi0 . . . fin} ∈ G in image I
for each pair [fi, fj ] where fj is observed in the neighborhood of fi do

Compute the relative position pr ∈ R2 of fj given fi

Vote for the corresponding observation [fi, fj , pr] in table S
end for
Keep all class pairs [fi, fj ] where

∑
pr
S[fi, fj , pr] > tc

4.2 Spatial Relations

In our framework, spatial relations are defined in terms of distance and direction be-
tween features. We implemented two solutions to estimate these parameters. The first
method uses the Expectation-Maximization (EM) algorithm, and the second imple-
ments a fast discrete voting scheme to find location evidence. The estimated geomet-
rical relations are used during feature generation (Section 4.3) in order to create new
features. First, however, we give some details on both methods for the estimation of
spatial relations.

Expectation-Maximization In principle, a sample of observed spatial relations xr

between two given features can be approximated by a Gaussian mixture, where each
component represents a cluster of relative positions µk of one of the two features fj with
respect to the other, the reference feature fi: p(xr;Θ) =

∑K
k=1 wkGk(xr;µk, θk). EM

is used to estimate the parameters of the spatial relation between each correlated feature
pair [fi, fj ] ∈ S . It maximizes the likelihood of the observed spatial relations over the
model parameters Θ = (w1...K ;µ1...K ; θ1...K). The Expectation (E) and Maximization
(M) steps of each iteration of the algorithm are defined as follows:

Step E Compute the current expected values of the component indicators tk(xi), 1 ≤
i ≤ n, 1 ≤ k ≤ K, where n is the number of observations, K is the number of
components and q is the current iteration:

t
(q)
k (xi) =

ŵ
(q)
k G

(
xi; µ̂

(q)
k , θ̂

(q)
k

)
∑K

l=1 ŵ
(q)
l G

(
xi; µ̂

(q)
l , θ̂

(q)
l

) (3)



Step M Determine the value of parameters Θq+1 containing the estimates ŵk, µ̂k, θ̂k

that maximize the likelihood of the data {x} given the tk(xi):

ŵ
(q+1)
k = 1

n

∑n
i=1 t

(q)
k µ̂

(q+1)
k =

∑n
i=1 t

(q)
k (xi)

/∑n
i=1 t

(q)
k

θ̂
(q+1)
k =

∑n
i=1 t

(q)
k

(
xi − µ̂(q+1)

k

)(
xi − µ̂(q+1)

k

)T /∑n
i=1 t

(q)
k

(4)

In our implementation, a mixture of only two Gaussian components (K = 2) is used
to model spatial relations. The first component represents the most probable relative
position, and the second is used to model the noise. When the location µ1 of the first
component is estimated, it is projected into a cylindrical space defined by distance d
and orientation θ parameters. We store the corresponding information [fi, fj , d, θ,Σ]
in a table T .

Voting A faster method to estimate spatial relations is to discretize distance and direc-
tion between features. The idea is to create a bi-dimensional histogram for every cor-
related feature pair [fi, fj ] ∈ S. The dimensions of these histograms are the distance d
and the relative direction θ from features fi to fj . Each observation [fi, fj , pr] stored in
table S is projected into a cylindrical space [d, θ] and votes for the corresponding entry
[d, θ] of histogram H[fi, fj ]. After the completion of this voting procedure, we look
for significant local maxima in the 2D histograms and store them in the table T . In our
implementation, the distances are expressed relative to the part size and are discretized
into 36 bins, while the directions are discretized into 72 bins (5-degree precision).

4.3 Feature generation

When a reliable reciprocal spatial correlation is detected between two features [fi, fj ],
the generation of a new feature in our model is straightforward. We combine these fea-
tures to create a new higher-level feature by adding a new node fn to the graph. We
connect it to its subfeatures [fi, fj ] by two edges ei, ej that are added to −→E . Their
parameters are computed using the spatial relation {µi,j , µj,i} obtained from the pre-
ceding step, and are stored in table T .

The generated feature is located at the midpoint between the subfeatures. Thus the
distance from the subfeatures to the new feature is set to the half distance between
the subfeatures [fi, fj ]; µ1 = µi,j/2, µ2 = µj,i/2 and is copied to the new edges;
ei(fi, fn) = {µ1, Σ1}, ej(fj , fn) = {µ2, Σ2}.

5 Experiments

In this section, we illustrate our visual feature learning scheme on an object recognition
task using several objects of the Columbia University Object Image Library (COIL-
100) [8]. This library is very commonly used in object recognition research and contains
color images of 100 different objects. Each image was captured by a fixed camera at
pose intervals of 5 degrees. For our experiments, we used 5 neighboring views of an
object to build the corresponding object model. When the learning process is completed,
the model is thus tuned for a given view of the object.



As we mentioned before, our system does not depend on any particular feature de-
tector. We used Harris interest points and rotation invariant descriptors comprising 256
pixel values. Any other feature detector can be used to detect and extract more robust
information. We deliberately used simple feature to demonstrate the functioning of our
method. To estimate the primitives of each object model, we used K-Means to cluster
the feature space. The number of classes was selected according to the BIC criterion
[13]. For the object presented in Figure 2, the learning process used 16 feature classes
(generated by K-Means) to extract correlated features of the same level in the graphical
model. For the first level of the graph, it found 7 spatial relations between features that
were then used to build the next level of the graph. In order to avoid excessive growth
of the graph due to the feature combinatorics, we only kept the most salient spatial
relations between features. Figure 3 shows the graph learned on different objects.

Figure 5 illustrates the viewpoint invariance of the object model. To generate the
graph, we ran the detection process on a series of images differing in viewing angle by
increments of 5 degrees. We show the maximum response of our model for each image
(the detection for each image is presented in Figure 2). The model responded maximally
to one of the training views, with the response gradually falling off as the image was
transformed away from its preferred view. We can determine the invariance range of
the object model by comparing the maximum response of all views with the responses
of distractors (20 images were taken randomly from coil-100 database, some of these
are presented in Figure 4). The invariance range is then defined as the range over which
the model response is greater than to any of the distractor objects. For the test image
presented in Figure 5, the minimum response to establish the presence of the object
was approximately 0.45. We obtained an average viewpoint invariance over 50 degrees.
These results are remarkable considering the fact that we did not use affine-invariant
features at the leaf level.

We also tested, in Figure 4, the robustness of our model in a cluttered scene contain-
ing three instances of the object. As we explained in Section 3, the detection process
starts with low-level feature detection and then propagate evidence in graph. In this im-
age, many primitive features of the object class are detected in the image. This is due to
the fact that the local appearance of some interest points is similar to the primitives of
the model. However, the use of geometric relations to infer the presence of higher-level
feature allows an unambiguous detection. As we can see for the object on the right of
Figure 4, only a few features are needed to detect the object. The response of the model
increases with the number of spatially coherent features detected. On the left, a major
portion of the object is present in the image and leads to a strong response of the model.

6 Discussion

During the past years, great attention has been paid to unsupervised model learning
applied to object models [10]. In theses techniques, objects are represented by parts,
each modeled in terms of both shape and appearance by Gaussian probability density
functions. This concept, which originally operated in batch mode, has been improved
by introducing incremental learning [5]. Another improvement [3] used information
obtained from previously learned models. In parallel, Agarwal et al. [1] presented a



method for learning to detect objects that is based on a sparse, part-based representa-
tions. The main limitation of these schemes lies in the representation because it only
contains two levels, the features and the models.

In previous work, we used a Bayesian network classifier for constructing visual
features by hierarchical composition of primitive features[11]. However, the spatial ar-
rangement of primitives was rigid and limited the robustness of the system.

Arguing that existing techniques fail to exploit the structure of the graphical models
describing many vision problems, Sudderth et al.[14] presented Nonparametric Belief
Propagation (NBP) applicable to general distributions. Our framework can be extended
using NBP instead of classical BP in order to perform a more robust detection.

A hierarchical model of recognition in the visual cortex has been proposed by
Riesenhuber et al. [12] where spatial combinations are constructed by alternately em-
ploying a maximum and sum pooling operation. Wersing et al. [15] used a sparse-
coding learning rule to derive local feature combinations in a visual hierarchy. However,
in such models there exists no explicit representation of object structure.

In neuroscience, recent evidence [2] reinforces the idea that the coding of geomet-
rical relations in high-level visual features is essential. Moreover, recent work suggests
that the visual cortex represents objects hierarchically by parts or subfeatures [6].

The framework presented in this paper offers several significant improvements over
current methods proposed in the literature. Taking advantage of graphical models, we
represent shape and appearance separately. This allows us to deal with shape deforma-
tion and appearance variability. The hierarchical model presented here opens a wide
door to other computer vision applications. Several directions can be pursued; the most
promising and challenging is certainly the unsupervised discovery of object categories.
Future work will focus on the use of Nonparametric Belief Propagation (NBP) and the
integration of the hierarchical model in a supervised learning environment.
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Fig. 2. Evidence map of an object model on a
series of images differing in viewing angle.

Fig. 3. Graphical models learned on two objects.

Fig. 4. Cluttered scene containing three in-
stances of the object (top) and corresponding re-
sponse of the detection process for the object
model (bottom). The three major peaks observed
in the density map correspond to the most prob-
able object model locations.
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fering in viewing angle by 5 degrees.
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tection process uses the presence of primitives
to infer the location of the higher level features.
The sum of the density probability function for
each feature of the level is shown on the right of
the image.
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