INFO0013 Computer Vision

Linear Filtering
Justus H. Plater

Where are we at?

We know: how to recover stereo camera geometry (given internal camera parameters).
This involves: finding point correspondences.
We would like: to automate this – in particular, as we go from 2 to many images.
This requires some background. Here we go:

Overview

An image is characterized by
• intensity values
• the spatial distribution of these values
An analysis/quantification of these characteristics is fundamental to just about any higher-level vision application. How do we do this?

Linear filtering:
• Transformation of Intensity Distributions
 noise suppression, image enhancement, ...
• Feature Extraction
 edge detection, appearance characterization, ...

Introduction to Discrete Convolution
Example: Smoothing by Block Averaging

\[R_{ij} = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F_{uv} \]

[Figure from Forsyth and Ponce 2003]

Another Way of Smoothing

[Figure from Forsyth and Ponce 2003]

Discrete Convolution

The second image was obtained by Gaussian-weighted averaging.

In general, if a filter kernel is represented by a matrix \(H \), the filtered result \(R \) of an image \(F \) is obtained by convolution:

\[R_{ij} = \sum_{uv} H_{i-u,j-v} F_{uv} \]

[Figure from Forsyth and Ponce 2003]
Shift-Invariant Linear System

Superposition:
\[R(f + g) = R(f) + R(g) \]

Scaling:
\[R(kf) = kR(f) \]

Shift Invariance:
The response to a translated stimulus is the translated response to the stimulus.

Discrete Convolution in One Dimension

Define: The \(j \)th element of vector \(\text{shift}(f, i) \) is \(f_{ji} \). Then,
\[f = \sum_i f_i \text{shift}(f, i) \] where \(e_0 = \ldots 0, 0, 1, 0, 0, \ldots \)

Since \(R \) is linear and shift invariant, we have
\[R(f) = R(\sum_i f_i \text{shift}(e_0, i)) = \sum_i f_i \text{shift}(R(e_0), i) \]

\(R(e_0) = g \) is the kernel or impulse response of \(R \), and
\[R(f) = \sum_i f_i \text{shift}(g, i) = g * f \]

defines a discrete convolution, where \(R_j = \sum_i g_{ji} f_i \).

Discrete Convolution in Two Dimensions

For a 2D analog of \(e_0 \), we have
\[R = G * F \]
\[R_{ij} = \sum_{uv} G_{i-u,j-v} F_{uv} \]

The impulse response \(G \) of a 2D system is also called its point spread function.

What To Do at the Image Boundaries?

- **Ignore undefined pixels** – every convolution shrinks the image
- **Pad the image with constant values** – may create substantial gradients
- **Extend the image with its mirror image** – may create substantial second-order gradients
- **Extend the image by replicating its boundary pixels** – ditto (but often a simple and pragmatic solution)
Properties of Convolutions

- Convolutions are **symmetric** and **associative**:
 \[g * h = h * g \]
 \[(f * g) * h = f * (g * h) \]
- For fixed \(i, j \), a convolution \(R_{ij} = \sum_{u,v} G_{i-u,j-v} F_{uv} \) computes an **inner product** with a flipped version of \(G \) and thus acts as a **template** or a **feature detector**.

Representing Spatial Change

Approach: Change of basis: Instead of spatial intensities, represent **spatial frequencies**!

Fourier Transform: Represent a spatial signal as a weighted sum of sinusoids:

\[
F(g(x, y)(u, v)) = \iint_{-\infty}^{\infty} g(x, y) e^{-2\pi i (ux + vy)} \, dx \, dy
\]

\[
e^{-2\pi i (ux + vy)} = \cos(2\pi (ux + vy)) + i\sin(2\pi (ux + vy))
\]

For fixed \(u, v \): “inner product” of signal with sine ripples along \(ux + vy = \text{const} \) of orientation \(\tan\theta = \frac{v}{u} \), and frequency \(\sqrt{u^2 + v^2} \).

The Real Term of Some Fourier Bases

(Figure from Forsyth and Ponce 2003)
Real and Imaginary Parts of a Fourier Transform

More about the Fourier Transform

Linearity:
\[F(g(x, y) + h(x, y)) = F(g(x, y)) + F(h(x, y)) \]
\[F(kg(x, y)) = kF(g(x, y)) \]

Inverse Fourier Transform: symmetric, with the sign of the exponent reversed. Allows reconstruction of images from Fourier spectra!

Convolution Theorem: Convolution in the spatial domain \((f * g)(x, y)\) is multiplication in the Fourier domain \(F(f)F(g)(u, v)\), and vice versa.

Magnitude and Phase: A meaningful way of looking at the complex-valued function \(F(u, v)\).

Magnitude and Phase Spectra of a Fourier Transform

Zebra, Cheetah

(Figure from Forsyth and Ponce 2003)
Smoothing

Smoothing can be done
• in the frequency domain by multiplication with a box function
 \[\text{Problem?} \]
• in the spatial domain by convolution with the inverse Fourier transform of the box function:
 \[\frac{\sin x \sin y}{xy} \]
 \[\text{Problem?} \]

Design of bandpass filters involves a trade-off between roll-off and ripple.
A good choice is often a Gaussian kernel.

Why Use a Gaussian For Smoothing?

• Because it’s intuitive.
• Relatively good band-pass characteristics and no ripples. Its Fourier transform is also a Gaussian:
 \[\mathcal{F} \left(e^{-\frac{x^2}{2\sigma^2}} \right) = \sqrt{2\pi\sigma} e^{-2\pi^2\sigma^2} \]
 \[\text{Axis-parallel Gaussians are separable:} \]
 \[G_{\sigma}(x, y) = \frac{1}{2\pi\sigma} e^{-\frac{x^2+y^2}{2\sigma^2}} \]
 \[= \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2}{2\sigma^2}} \times \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{y^2}{2\sigma^2}} \]

Thus, a 2D convolution is reduced to two 1D convolutions.

Why Use a Gaussian For Smoothing? (Continued)

• Gaussians (and their derivatives) have recursive implementations that are extremely efficient even for large values of \(\sigma \).
• Derivatives of Gaussians are steerable.
 \[G_{\sigma_1} \ast G_{\sigma_2} = G_{\sqrt{\sigma_1^2 + \sigma_2^2}} \]

Repeated filtering with a small Gaussian can be more efficient than filtering with a large Gaussian, and leads naturally to a pyramid.
• The Central Limit Theorem: Repeated convolution with any kernel eventually yields Gaussian filtering.
• Gaussian filtering corresponds to a physical diffusion process:
Why Use a Gaussian For Smoothing? (Continued)

Designing a Discrete Filter Kernel

For our purposes: Simply sample the desired continuous kernel.

Warning

Choose a sufficiently large support!

Conclusions

Summary

What we’ve learned today:

- Linear filtering by convolution
- The Fourier transform
- A praise song to the Gaussian