INFO0013 Computer Vision

Camera Parameters and Their Calibration

Justus H. Plater

How to insert an artificial item into an image of a real scene?

Parameters of a Projective Camera

Reminder: Our Camera Matrix

\[P = \begin{bmatrix} f' & 0 & 0 & 0 \\ 0 & f' & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \]

\[x = P X \]

What do the other coefficients do? Do we need them?
Internal Parameters

Conventionally, one uses an *inverted pinhole model* with the image plane placed in front of the projection center, and positive z coordinates.

1. Principal point offset
2. Pixel aspect ratio
3. Skew

Matrix of intrinsic parameters $K = \text{camera calibration matrix}$

$x = K[I]_0 X$

See a demo.

Positioning the Camera in Space

Coordinate system transformations, first in 2D:

- Translation: $x' = x + t$
- Rotation: $x' = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} x$

In homogeneous coordinates?

To map world points into the camera frame:

- move the world frame into the camera frame
- *move the camera frame into the world frame*
Pure Rotation in 3D

![Diagram of Pure Rotation in 3D]

Figure from Forsyth/Horn lecture notes

3 Elementary Axis Rotations [7]

![Diagram of 3 Elementary Axis Rotations]

Figure from Forsyth/Horn lecture notes

General Rigid Transformation

![Diagram of General Rigid Transformation]

Figure from Forsyth/Horn lecture notes

External Parameters

- Position c of the camera center
- Orientation R of the camera

Perspective Projection Matrix $P = \text{Projective Camera}$

\[x = P \chi \]

\[P = KR[I - c] = K[R|t]\]

See a demo.

To align the camera frame with the world frame,

1. translate the camera to the origin of the world frame,
2. rotate it about the origin to align the x and z axes,
3. translate, scale and shear to make the y axis and units match.
Affine Cameras

- Moving back along the principal axis by a distance factor of k w.r.t.
 the world origin multiplies p_{34} by k.
- Zooming in by a factor of k multiplies \mathbf{K} on the right
 by $\text{diag}(k, k, 1)$.
- If one then divides P by k, the last row eventually
 becomes $[0, 0, 0, p_{34}]$.

Good approximation if all distances are large.

Geometric Camera Calibration

Calibration Rig

(Figure from Forsyth/Ponce lecture notes)

Estimating a Camera P with the Direct Linear Transform (DLT)

- 11 degrees of freedom
- Minimal, linear solution: 5 1/2 point correspondences
 expressed as $x_i \times PX_i = 0$, giving rise to a system
 $Ap = 0$ with rank-11 coefficient matrix A.
 To help us write down A concisely, let p^T_i denote the
 jth row of matrix P, such that $PX_i = [p^T_1 X_1 \ldots p^T_n X_n]$.
- Overdetermined solution minimizing algebraic error
 $\|Ap\|^2 = \sum \sigma_i^3(x_i, PX_i) = \sum \|x_i \times PX_i\|^2$
Error Management

- Minimize geometric error by nonlinear optimization
 - transfer error: \(\sum d^2(\mathbf{x}_i, \mathbf{pX}_i) \)
 - reprojection error: \(\sum (d^2_{\text{mah}}(\mathbf{x}_i, \hat{\mathbf{x}}_i) + d^2_{\text{mah}}(\mathbf{x}_i, \tilde{\mathbf{x}}_i)) \)
 subject to \(\hat{\mathbf{x}}_i = \mathbf{p}\hat{\mathbf{X}}_i \)
- Before estimating, normalize (translate centroid to origin, scale such that the average norm is \(\sqrt{2} \)): \(\mathbf{T} \) and \(\mathbf{U} \) normalize the \(\mathbf{x}_i \) and the \(\hat{\mathbf{X}}_i \); \(\mathbf{P} = \mathbf{T}^{-1}\mathbf{pU} \).
- Incorporate known constraints on \(\mathbf{K} \): Parametrize \(\mathbf{P} \) appropriately.
- Watch out for degenerate point configurations!

Determining the camera parameters

\[
\mathbf{P} = [\mathbf{A}\mid \mathbf{b}] = \mathbf{A}[\mathbf{I} - \mathbf{c}] = \mathbf{K}[\mathbf{R}[\mathbf{I} - \mathbf{c}] \]

- Camera center: \(\mathbf{c} = -\mathbf{A}^{-1}\mathbf{b} \)
- \(\mathbf{K}, \mathbf{R} \): RQ-decomposition of \(\mathbf{A} \)

Correcting for Radial Distortion

\[
\hat{\mathbf{p}} = \mathbf{c} + L(r)|\mathbf{p} - \mathbf{c}|
\]

\[
r^2 = (\mathbf{p} - \mathbf{c})^T(\mathbf{p} - \mathbf{c})
\]

\[
L(r) = 1 + K_2r^2 + K_3r^3 + \ldots
\]

where \(\hat{\mathbf{p}} \) and \(\mathbf{p} \) are the corrected and measured coordinates, and \(\mathbf{c} \) is the center of radial distortion (which may not coincide with the principal point).

During nonlinear camera calibration, simply add all the \(K_i \) and perhaps \(\mathbf{c} \) to the unknown parameters!

Note

If the pixel aspect ratio is not unity, it must be taken into account when computing \(r^2 \).

Calibration in Practice

Instead of relying on a calibration rig with point features at known 3D coordinates,

- use auto-calibration to find the internal parameters by taking several pictures of any sufficiently richly structured scene,
- calibrate for radial distortion by choosing a scene that contains lots of straight lines, and arrange for these lines to come out straight in the image.
Solving an Overdetermined Homogeneous Linear System

Given the linear system $Ax = 0$, we seek the coefficients x that minimize the squared-error function $E = e^T e$, where $e = Ax$.

To avoid the trivial solution $x = 0$, we need to impose a constraint on x, e.g., $x^T x = 1$.

In this case, the solution is given by the eigenvector corresponding to the minimum eigenvalue of $A^T A$.

Nice numerical methods exist. Most simply, x is the last column of V, where $A = USV^T$ is the SVD of A.

Singular Value Decomposition

SVD decomposes any matrix A into three matrices such that $A = USV^T$.

S is diagonal; its elements s_{ii} are called the singular values of A. They are generally arranged in nonincreasing order.

The columns v_j of the orthonormal matrix V are called the singular vectors of A.

It follows that $Av_j = s_{ii} u_j$, and in particular, if $s_{ii} = 0$, $Av_j = 0$.

Note

You don’t want to code sophisticated numerical methods yourself. See the Numerical Recipes, Matlab, vision libraries ...

Nonlinear Systems

Consider a nonlinear, differentiable function $f : \mathbb{R}^n \rightarrow \mathbb{R}^p$ and the general system $f(x) = 0$.

- There is no general method for finding the global minimum of the squared error $E(x) = \sum_{i=1}^{p} f_i^2(x)$

- There are methods that look for local minima of the error function (by linearization using a first-order Taylor expansion around a current estimate x).
Methods for Nonlinear Systems

- For $p = q$, Newton's familiar method.
- For $p > q$, essentially do Newton on the gradient of the least-squares error function (which thus requires its Hessian).
- There are approximations to the latter method that do not require the Hessian and are thus more flexible and more robust, first of all the Levenberg-Marquardt algorithm.

Summary

- Knowing P, we can now render an artificial item and paste it into the scene!
- These are classical methods.
- There is lots of insight to be gained by deeper math.
- There are interesting practical methods (autocalibration without known world coordinates).