INFO0013 Computer Vision

Camera Parameters and Their Calibration

Justus H. Piater

How to insert an artificial item into an image of a real scene?
Reminder: Our Camera Matrix

\[P = \begin{bmatrix} f' & 0 & 0 & 0 \\ 0 & f' & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \]
\[\mathbf{x} = P\mathbf{X} \]

What do the other coefficients do? Do we need them?
Internal Parameters

Conventionally, one uses an inverted pinhole model with the image plane placed in front of the projection center, and positive z coordinates.

1. Principal point offset
2. Pixel aspect ratio
3. Skew

Matrix of intrinsic parameters \(K = \text{camera calibration matrix} \)

\[x = K[I|0]X \]

See a demo.

[Figure from Forsyth/Ponce lecture notes]
Positioning the Camera in Space

Coordinate system transformations, first in 2D:
- Translation: \(\mathbf{x}' = \mathbf{x} + \mathbf{t} \)
- Rotation: \(\mathbf{x}' = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \mathbf{x} \)

In homogeneous coordinates?

To map world points into the camera frame:
- move the world frame into the camera frame
- move the camera frame into the world frame

Pure Translation in 3D

[Figure from Forsyth/Ponce lecture notes]
Pure Rotation in 3D

3 Elementary Axis Rotations [7]
External Parameters

- Position \(\mathbf{c} \) of the camera center
- Orientation \(\mathbf{R} \) of the camera

Perspective Projection Matrix \(\mathbf{P} = \text{Projective Camera} \)

\[\mathbf{x} = \mathbf{P} \mathbf{X} \]

\[\mathbf{P} = K \mathbf{R} [\mathbf{I} - \mathbf{c}] = K \mathbf{R} [\mathbf{I} - \mathbf{t}] \]

See a demo.

To align the camera frame with the world frame,

1. translate the camera to the origin of the world frame,
2. rotate it about the origin to align the \(x \) and \(z \) axes,
3. translate, scale and shear to make the \(y \) axis and units match.
Affine Cameras

- Moving back along the principal axis by a distance factor of k w.r.t. the world origin multiplies p_{34} by k.
- Zooming in by a factor of k multiplies K on the right by $\text{diag}(k, k, 1)$.
- If one then divides P by k, the last row eventually becomes $[0, 0, 0, p_{34}]$.

Good approximation if all distances are large.

Geometric Camera Calibration
Estimating a Camera P with the Direct Linear Transform (DLT)

- 11 degrees of freedom
- Minimal, linear solution: 5 1/2 point correspondences expressed as $x_i \times PX_i = 0$, giving rise to a system $Ap = 0$ with rank-11 coefficient matrix A.

To help us write down A concisely, let p_j^T denote the jth row of matrix P, such that $PX_i = \begin{bmatrix} p_{1j}^T X_i \\ p_{2j}^T X_i \\ p_{3j}^T X_i \end{bmatrix}$.

- Overdetermined solution minimizing algebraic error $\| Ap \|^2 = \sum_i c_{\text{alg}}(x_i, PX_i) = \sum_i \| x_i \times PX_i \|^2$
Error Management

• Minimize geometric error by nonlinear optimization
 • transfer error: \(\sum_i d^2(\mathbf{x}_i, P\mathbf{x}_i) \)
 • reprojection error: \(\sum_i (d_{\text{Maha}}^2(\mathbf{x}_i, \hat{\mathbf{x}}_i) + d_{\text{Maha}}^2(\hat{\mathbf{x}}_i, \hat{\mathbf{x}}_i)) \)
 subject to \(\hat{\mathbf{x}}_i = P\hat{\mathbf{x}}_i \)
• Before estimating, normalize (translate centroid to origin, scale such that the average norm is \(\sqrt{2} \)): \(T \) and \(U \) normalize the \(\mathbf{x}_i \) and the \(\mathbf{X}_i \); \(P = T^{-1}PU \).
• Incorporate known constraints on \(K \): Parametrize \(P \) appropriately.
• Watch out for degenerate point configurations!

Determining the camera parameters

• Camera center: \(c = -A^{-1}b \)
• \(K, R \): RQ-decomposition of \(A \)
Correcting for Radial Distortion

\[\hat{p} = c + L(r)(p - c) \]
\[r^2 = (p - c)^T(p - c) \]
\[L(r) = 1 + \kappa_1 r + \kappa_2 r^2 + \kappa_3 r^3 + \ldots \]

where \(\hat{p} \) and \(p \) are the corrected and measured coordinates, and \(c \) is the center of radial distortion (which may not coincide with the principal point).

During nonlinear camera calibration, simply add all the \(\kappa_i \) and perhaps \(c \) to the unknown parameters!

Note

If the pixel aspect ratio is not unity, it must be taken into account when computing \(r^2 \).

Calibration in Practice

Instead of relying on a calibration rig with point features at known 3D coordinates,

- use *auto-calibration* to find the internal parameters by taking several pictures of any sufficiently richly structured scene,
- calibrate for radial distortion by choosing a scene that contains lots of *straight lines*, and arrange for these lines to come out straight in the image.
Solving an Overdetermined Homogeneous Linear System

Given the linear system $Ax = 0$, we seek the coefficients x that minimize the squared-error function $E = e^T e$, where $e = Ax$.

To avoid the trivial solution $x = 0$, we need to impose a constraint on x, e.g., $x^T x = 1$.

In this case, the solution is given by the eigenvector corresponding to the minimum eigenvalue of $A^T A$.

Nice numerical methods exist. Most simply, x is the last column of V, where $A = U S V^T$ is the SVD of A.
Singular Value Decomposition

SVD decomposes any matrix A into three matrices such that $A=USV^T$.

S is diagonal; its elements s_{ii} are called the **singular values** of A. They are generally arranged in nonincreasing order.

The columns v_j of the orthonormal matrix V are called the **singular vectors** of A.

It follows that $Av_j = s_{jj}u_j$, and in particular, if $s_{jj} = 0$, $Av_j = 0$.

Note

You don’t want to code sophisticated numerical methods yourself. See the *Numerical Recipes*, Matlab, vision libraries ...

Nonlinear Systems

Consider a nonlinear, differentiable function $f: \mathbb{R}^q \rightarrow \mathbb{R}^p$ and the general system $f(x) = 0$.

- There is no general method for finding the global minimum of the squared error

$$E(x) = \sum_{i=1}^{p} f_i^2(x)$$

- There are methods that look for **local minima** of the error function (by linearization using a first-order Taylor expansion around a current estimate x).
Methods for Nonlinear Systems

- For $p = q$, Newton’s familiar method.
- For $p > q$, essentially do Newton on the gradient of the least-squares error function (which thus requires its Hessian).
- There are approximations to the latter method that do not require the Hessian and are thus more flexible and more robust, first of all the Levenberg-Marquardt algorithm.
Summary

- Knowing P, we can now render an artificial item and paste it into the scene!
- These are classical methods.
- There is lots of insight to be gained by deeper math.
- There are interesting practical methods (autocalibration without known world coordinates).