Logic - Tutorial 1

Professor: Pascal Gribomont - gribomont@montefiore.ulg.ac.be TA: Antoine Dubois - antoine.dubois@uliege.be

Faculty of Applied Sciences
University of Liège

About me

- Graduated in 2018 from the master : computer engineer, specialized in 'intelligent systems'
\Rightarrow Master thesis on facial recognition with L. Wehenkel and RAGI
- Left one year to travel in Australia and Asia
- PhD thesis on intercontinental electricity connections with D . Ernst
- Contact info:
- Email: antoine.dubois@uliege.be
- Room: B28, R137

About the tutorial

- Once a week, after theory
- Max 2h
- Slides in English but given in French
- Structure
- A reminder if need be
- One exercise together
- For other exercise, you try then we discuss the solution

Reminder

Propositional calculus: formal language to determine the truth values of propositions.

Syntax: Define the structure of propositions

Propositions:

- Atoms or atomic propositions. Expl:
- s : the sun is shinning
- r : the rain is falling
- Formulas or compound propositions $=$ atoms + boolean connectives. Expl:
- A: the sun is shinning or the rain is falling $\rightarrow A \triangleq s \vee r$

Reminder

More formally, a formula of propositional calculus is a symbol string generated by the grammar

$$
\begin{aligned}
& \text { formula }::=p, \forall p \in P \text { (i.e a set of atoms) } \\
& \text { formula }::=\text { true false } \\
& \text { formula }::=\neg \text { formula } \\
& \text { formula }::=(\text { formula op formula) } \\
& \qquad \text { op }::=\vee|\wedge| \Rightarrow|\equiv| \Leftarrow
\end{aligned}
$$

Reminder

Semantics: Assigning truth values to propositions
Interpretation (/Valuation)
An interpretation or valuation v is a function assigning a truth value, T or F, to a proposition.

Remark: 'true' vs 'T'

- 'true' \rightarrow syntactic
- 'T' \rightarrow semantic

Reminder

For a formula A built from the atoms $\left\{p_{1}, \ldots, p_{n}\right\}, v$ assigns a truth value to each atom and the truth value of A is then assigned according to the following inductive rules:

A	$v\left(A_{1}\right)$	$v\left(A_{2}\right)$	$v(A)$
true			T
false			F
$\neg A_{1}$	T		F
$\neg A_{1}$	F		T
$A_{1} \vee A_{2}$	F	F	F
$A_{1} \vee A_{2}$	else		T
$A_{1} \wedge A_{2}$	T	T	T
$A_{1} \wedge A_{2}$	else		F
$A_{1} \Rightarrow A_{2}$	T	F	F
$A_{1} \Rightarrow A_{2}$	else		T
$A_{1} \Leftarrow A_{2}$	F	T	F
$A_{1} \Leftarrow A_{2}$	else		T
$A_{1} \equiv A_{2}$	$v\left(A_{1}\right)$	$v\left(A_{2}\right)$	T
$A_{1} \equiv A_{2}$	$v\left(A_{1}\right)$	$v\left(A_{2}\right)$	F

Truth tables allows to test different valuations in a structured way.

Reminder

Satisfiability (consistency)

- A valuation v of formula A is a model of A if $v(A)=T$
- A is satisfiable or consistent if A has at least one model.
- A is unsatisfiable or inconsistent if there exist no valuation v that is a model of A.
Expl: Joe is strong and Joe is not strong.

Validity

- A is valid, or a tautology, if $v(A)=T$ for all possible valuations v. Expl: Joe is strong or Joe is not strong.
- Notation: $\models A$
- A is valid if and only if its negation $\neg A$ is unsatisfiable.

Reminder

Formula sets

Let S be a set of formulas $\left\{A_{1}, \ldots, A_{n}\right\}$.

- A valuation v of S is a model of S if it is a model of all formulas in S
- S is satisfiable or consistent if S has at least one model.
- The models of the finite set $S=\left\{A_{1}, \ldots, A_{n}\right\}$ are the models of the conjunction $A_{1} \wedge \ldots \wedge A_{n}$
Expl: $S=\{$ Joe is strong, Joe is intelligent, Joe is funny \}

Logical consequence

- A formula A is a logical consequence of a formula set S if every S - model is an A - model
- Notation: $S \models A$

Expl: $\{$ Joe is strong, Joe is intelligent, Joe is funny $\} \models I$ don't like Joe.

- Remark on $\models A$: A formula is valid iff it is a logical consequence of the empty set.

Reminder

Logical consequence (bis)

Let A be a formula and $S=\left\{A_{1}, \ldots, A_{n}\right\}$ be a formula set, the followings are equivalent:
(1) $S \models A$
(2) $S \cup\{\neg A\}$ is inconsistent
(3) $A_{1} \wedge \ldots \wedge A_{n} \Rightarrow A$ is valid
(c) $A_{1} \wedge \ldots \wedge A_{n} \wedge \neg A$ is inconsistent

Logical equivalence

- Two formulas A_{1} and A_{2} are logically equivalent if they have the same models.
- Notation: $A_{1} \longleftrightarrow A_{2}$

Exercise 1

Exercise 1

Give the truth table of the following formula:

$$
G \triangleq(p \Rightarrow q) \Rightarrow[(\neg p \Rightarrow q) \Rightarrow q]
$$

What conclusions can you make?

Exercise 1 - Solution

$$
G \triangleq(p \Rightarrow q) \Rightarrow[(\neg p \Rightarrow q) \Rightarrow q]
$$

First step: decompose the formula into columns

$$
\begin{array}{lc|c|c|c|c|c}
p \quad q & p \Rightarrow q & \neg p & \neg p \Rightarrow q & (\neg p \Rightarrow q) \Rightarrow q & G \\
\hline & & & & & & \\
& & & & & &
\end{array}
$$

Exercise 1 - Solution

\[

\]

This formula is valid, as it is always true (i.e. true for every possible model).

Exercise 2

Exercise 2

Give the truth table of the following formula:

$$
G \triangleq(p \equiv \text { true }) \Rightarrow[(\neg p \wedge q) \Rightarrow \text { true }]
$$

What can you say about the formula $(\neg p \wedge q) \Rightarrow$ true? Is G valid, inconsistent or consistent?

Exercise 2 - Solution

$$
G \triangleq(p \equiv \text { true }) \Rightarrow[(\neg p \wedge q) \Rightarrow \text { true }]
$$

p	q	$p \equiv$ true	$\neg p \wedge q$	$(\neg p \wedge q) \Rightarrow$ true	G
T	T	T	F	T	T
T	F	F	F	T	T
F	T	F	T	T	T
F	F	T	F	T	T

The formula G is valid as it is true for every model.
The formula $(\neg p \wedge q) \Rightarrow$ true is also valid. An implication evaluates to true if either the antecedent is F or if the consequent is T. In this case, the consequent, 'true', is always T , hence the formula is valid.

Exercise 3

Exercise 3

Giving a truth table of a formula consists in enumerating all possible interpretations over the atoms of said formula.
(1) How many lines are in a truth table?
(2) How many non-logically equivalent formulas can be constructed using a set of n atoms?

Exercise 3 - Solution

(1) If there are n atoms in the formula, the truth table will have 2^{n} lines.

Indeed, each atom can be evaluated at either T or F, so we have $\underbrace{2 * \ldots * 2}_{n}=2^{n}$ lines.
(2) There are $2^{2^{n}}$ non-logically equivalent formulas.

We have 2^{n} lines (/valuations) and each of them can lead to a truth value, either T or F (i.e. value in the last column of the truth table). As soon as one line leads to a different truth values for two different formulas, these two formulas are not logically equivalent.
Therefore, the number of non-logically equivalent formulas is $\underbrace{2 * \ldots * 2}_{2^{n}}=2^{2^{n}}$ lines.

Exercise 4

Exercise 4

Give the truth table of the following formula:

$$
G \triangleq(q \Rightarrow r) \Rightarrow[(p \Rightarrow q) \Rightarrow(p \Rightarrow r)]
$$

What can you say about G?

Exercise 4 - Solution

$$
G \triangleq(q \Rightarrow r) \Rightarrow[(p \Rightarrow q) \Rightarrow(p \Rightarrow r)]
$$

p	q	r	$q \Rightarrow r$	$p \Rightarrow q$	$p \Rightarrow r$	$(p \Rightarrow q) \Rightarrow(p \Rightarrow r)$	G
T	T	T	T	T	T	T	T
T	T	F	F	T	F	F	T
T	F	T	T	F	T	T	T
T	F	F	T	F	F	T	T
F	T	T	T	T	T	T	T
F	T	F	F	T	T	T	T
F	F	T	T	T	T	T	T
F	F	F	T	T	T	T	T

This formula is valid.

Exercise 5

Exercise 5

Give the truth table of the following formula:

$$
G \triangleq(p \vee q) \wedge \neg p \wedge \neg q
$$

What can you say about G?

Exercise 5 - Solution

$G \triangleq(p \vee q) \wedge \neg p \wedge \neg q$					
p	q	$\neg p$	$\neg q$	$p \vee q$	G
T	T	F	F	T	F
T	F	F	T	T	F
F	T	T	F	T	F
F	F	T	T	F	F

This formula is inconsistent as it admits no model.

Exercise 5 - Remarks

Easy to show that G is inconsistent without truth table. Indeed, by De Morgan algebraic law,

$$
\neg p \wedge \neg q \longleftrightarrow \neg(p \vee q)
$$

So no there is no valuation that is a model of both $\neg p \wedge \neg q$ and $(p \vee q)$ and therefore G is inconsistent.

Exercise 6

Exercise 6

If Robinson is elected president, then Smith will be designated vice-president. If Thompson is elected president, then Smith will designated be vice-president. Either Thompson or Robinson will be elected president. Therefore Smith will be designated vice-president.

Is this text correct?

Exercise 6 - Solution

Solution method:

1) Define atoms

- r : "Robinson is elected president"
- s : "Smith is designated vice-president"
- t: "Thompson is elected president"

2) Transform sentences in formulas:

- $H_{1} \triangleq r \Rightarrow s$
- $H_{2} \triangleq t \Rightarrow s$
- $H_{3} \triangleq t \vee r$
- $C \triangleq s$

Exercise 6 - Solution

3) Prove that the sentence is true, i.e. C is a logical consequence of $\left\{H_{1}, H_{2}, H_{3}\right\}$

Reminder, 3 possibilities:
(1) Prove $\left\{H_{1}, H_{2}, H_{3}\right\} \models C$
(2) Prove $\left\{\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}, \neg \mathrm{C}\right\}$ is inconsistent
(3) Prove $H_{1} \wedge H_{2} \wedge H_{3} \Rightarrow C$ is valid
(9) Prove $H_{1} \wedge H_{2} \wedge H_{3} \wedge \neg C$ is inconsistent

We will try case 3 and case 1 .

Exercise 6 - Solution

Method 3:
Show $G \triangleq H_{1} \wedge H_{2} \wedge H_{3} \Rightarrow C \triangleq(r \Rightarrow s) \wedge(t \Rightarrow s) \wedge(t \vee r) \Rightarrow s$ is valid.
A. Using a truth table.

r	s	t	$r \Rightarrow s$	$t \Rightarrow s$	$t \vee r$	$H_{1} \wedge H_{2} \wedge H_{3}$	G
T	T	T	T	T	T	T	T
T	T	F	T	T	T	T	T
T	F	T	F	F	T	F	T
T	F	F	F	T	T	F	T
F	T	T	T	T	T	T	T
F	T	F	T	T	F	F	T
F	F	T	T	F	T	F	T
F	F	F	T	T	F	F	T

Exercise 6 - Solution

B. Using valuation.

Ad absurdum
We need to show that there exist no v such that
$v\left(H_{1} \wedge H_{2} \wedge H_{3} \Rightarrow C\right)=F$. Let's consider that such a valuation exists.
Then:
(1) $v((r \Rightarrow s) \wedge(t \Rightarrow s) \wedge(t \vee r) \Rightarrow s)=F$
(2) $v((r \Rightarrow s) \wedge(t \Rightarrow s) \wedge(t \vee r))=T$ and $v(s)=F$
(3) $v(r \Rightarrow s)=T$ and $v(s)=F$ implies $v(r)=F$
(9) $v(t \vee r)$ and $v(r)=F$ implies $v(t)=T$

But then we have simultaneously that $v(t \Rightarrow s)$ must be T through 2 and F as $v(s)=F$ and $v(t)=T \rightarrow$ Contradiction!

There exist no such valuation and therefore the proposition is valid.

Exercise 6 - Solution

Method 1

Show $\left\{H_{1}, H_{2}, H_{3}\right\} \models C$.
We need to show that $v(C)=T$ when $v\left(H_{1} \wedge H_{2} \wedge H_{3}\right)=T$ for every possible valuation v.

Let v be a valuation such that $v\left(H_{1} \wedge H_{2} \wedge H_{3}\right)=T$. We therefore have that $v\left(H_{1}\right)=v\left(H_{2}\right)=v\left(H_{3}\right)=T$.

If $v\left(H_{3}\right)=T$, then $v(t \vee r)=T$ and we end up with two cases:

- $v(t)=T$
- $v(r)=T$

Exercise 6 - Solution

Case 1: $v(t)=T$
As we have $v\left(H_{2}\right)=T, v(t \Rightarrow s)=v($ true $\Rightarrow s)=T$. Therefore, $v(s)$ must be T and $v(C)$ also.

Case 2: $v(r)=T$
As we have $v\left(H_{1}\right)=T, v(r \Rightarrow s)=v($ true $\Rightarrow s)=T$. Therefore, $v(s)$ must be T and $v(C)$ also.

Conclusion
$v(C)=T$ in all cases so the sentence is true.

