Logic - Tutorial 1

Professor: Pascal Gribomont - gribomont@montefiore.ulg.ac.be TA: Antoine Dubois - antoine.dubois@uliege.be

> Faculty of Applied Sciences University of Liège

- Graduated in 2018 from the master : computer engineer, specialized in 'intelligent systems'
 - \Rightarrow Master thesis on facial recognition with L. Wehenkel and RAGI
- Left one year to travel in Australia and Asia
- PhD thesis on **intercontinental electricity connections** with D. Ernst
- Contact info:
 - Email: antoine.dubois@uliege.be
 - Room: B28, R137

- Once a week, after theory
- Max 2h
- Slides in English but given in French
- Structure
 - A reminder if need be
 - One exercise together
 - For other exercise, you try then we discuss the solution

Propositional calculus: formal language to determine the truth values of propositions.

Syntax: Define the structure of propositions

Propositions:

- Atoms or atomic propositions. Expl:
 - s: the sun is shinning
 - r: the rain is falling
- Formulas or compound propositions = atoms + boolean connectives. Expl:
 - A: the sun is shinning or the rain is falling $\rightarrow A \triangleq s \lor r$

More formally, a formula of propositional calculus is a symbol string generated by the grammar

formula ::= $p, \forall p \in P$ (i.e a set of atoms) formula ::= true|falseformula ::= \neg formula formula ::= (formula op formula) $op ::= \lor |\land| \Rightarrow | \equiv | \Leftarrow$

- 4 回 ト 4 ヨ ト - 4 ヨ ト -

Semantics: Assigning truth values to propositions

Interpretation (/Valuation)

An interpretation or valuation v is a function assigning a truth value, T or F, to a proposition.

Remark: 'true' vs 'T'

- 'true' \rightarrow syntactic
- 'T' \rightarrow semantic

For a formula A built from the atoms $\{p_1, ..., p_n\}$, *v* assigns a truth value to each atom and the truth value of A is then assigned according to the following inductive rules:

A	$v(A_1)$	$v(A_2)$	v(A)
true			T
false			F
$\neg A_1$	T		F
$\neg A_1$	F		T
$A_1 \lor A_2$	F	F	F
$A_1 \lor A_2$	el	T	
$A_1 \wedge A_2$	T	Т	T
$A_1 \wedge A_2$	e	F	
$A_1 \Rightarrow A_2$	T	F	F
$A_1 \Rightarrow A_2$	e	T	
$A_1 \Leftarrow A_2$	F	Т	F
$A_1 \Leftarrow A_2$	e	T	
$A_1 \equiv A_2$	$v(A_1) =$	T	
$A_1 \equiv A_2$	$v(A_1) =$	F	

Truth tables allows to test different valuations in a structured way.

Satisfiability (consistency)

- A valuation v of formula A is a **model** of A if v(A) = T
- A is satisfiable or consistent if A has at least one model.
- A is **unsatisfiable** or **inconsistent** if there exist no valuation v that is a model of A. Expl: Joe is strong and Joe is not strong.

Validity

- A is valid, or a tautology, if v(A) = T for all possible valuations v. Expl: Joe is strong or Joe is not strong.
- Notation: $\models A$
- A is valid if and only if its negation $\neg A$ is unsatisfiable.

Reminder

Formula sets

Let S be a set of formulas $\{A_1, ..., A_n\}$.

- A valuation v of S is a model of S if it is a model of all formulas in S
- S is satisfiable or consistent if S has at least one model.
- The models of the finite set $S = \{A_1, ..., A_n\}$ are the models of the conjunction $A_1 \land ... \land A_n$
- Expl: $S = \{ \text{Joe is strong, Joe is intelligent, Joe is funny} \}$

Logical consequence

- A formula *A* is a **logical consequence** of a formula set *S* if every *S model* is an *A model*
- Notation: S ⊨ A Expl: {Joe is strong, Joe is intelligent, Joe is funny} ⊨ I don't like Joe.
- Remark on ⊨ A: A formula is valid iff it is a logical consequence of the empty set.

Logical consequence (bis) Let A be a formula and $S = \{A_1, ..., A_n\}$ be a formula set, the followings are equivalent:

- $S \models A$
- **2** $S \cup \{\neg A\}$ is inconsistent
- $A_1 \wedge ... \wedge A_n \wedge \neg A$ is inconsistent

Logical equivalence

- Two formulas A₁ and A₂ are **logically equivalent** if they have the same models.
- Notation: $A_1 \longleftrightarrow A_2$

イロト イ理ト イヨト イヨト 二日

Give the truth table of the following formula:

$$G \triangleq (p \Rightarrow q) \Rightarrow [(\neg p \Rightarrow q) \Rightarrow q]$$

What conclusions can you make?

< Ξ > < Ξ >

$$G \triangleq (p \Rightarrow q) \Rightarrow [(\neg p \Rightarrow q) \Rightarrow q]$$

First step: decompose the formula into columns

12 / 29

æ

イロン イ理と イヨン イヨン

Exercise 1 - Solution

This formula is **valid**, as it is always true (i.e. true for every possible model).

Give the truth table of the following formula:

$$G \triangleq (p \equiv \text{true}) \Rightarrow [(\neg p \land q) \Rightarrow \text{true}]$$

What can you say about the formula $(\neg p \land q) \Rightarrow$ true? Is *G* valid, inconsistent or consistent?

Exercise 2 - Solution

$$G \triangleq (p \equiv \text{true}) \Rightarrow [(\neg p \land q) \Rightarrow \text{true}]$$

$$p = q \quad p \equiv \text{true} \quad \neg p \land q \quad (\neg p \land q) \Rightarrow \text{true} \quad G$$

$$T = T \quad T \quad F \quad F \quad T \quad T \quad T$$

$$F = F \quad F \quad F \quad T \quad T \quad T$$

$$F = T \quad F \quad T \quad T \quad T$$

$$F = F \quad T \quad F \quad T \quad T$$

$$F = F \quad T \quad F \quad T \quad T$$

The formula *G* is **valid** as it is true for every model.

The formula $(\neg p \land q) \Rightarrow$ true is also valid. An implication evaluates to true if either the antecedent is F or if the consequent is T. In this case, the consequent, 'true', is always T, hence the formula is valid.

Giving a truth table of a formula consists in enumerating all possible interpretations over the atoms of said formula.

- I How many lines are in a truth table?
- e How many non-logically equivalent formulas can be constructed using a set of *n* atoms?

16 / 29

() If there are n atoms in the formula, the truth table will have 2^n lines.

Indeed, each atom can be evaluated at either T or F, so we have $2 * ... * 2 = 2^n$ lines.

2 There are 2^{2^n} non-logically equivalent formulas.

We have 2^n lines (/valuations) and each of them can lead to a truth value, either T or F (i.e. value in the last column of the truth table). As soon as one line leads to a different truth values for two different formulas, these two formulas are not logically equivalent. Therefore, the number of non-logically equivalent formulas is $2 * ... * 2 = 2^{2^n}$ lines.

Give the truth table of the following formula:

$$G \triangleq (q \Rightarrow r) \Rightarrow [(p \Rightarrow q) \Rightarrow (p \Rightarrow r)]$$

What can you say about G?

< Ξ > < Ξ >

Exercise 4 - Solution

$G \triangleq (q \Rightarrow r) \Rightarrow [(p \Rightarrow q) \Rightarrow (p \Rightarrow r)]$									
р	q	r	$q \Rightarrow r$	$p \Rightarrow q$	$p \Rightarrow r$	$(p \Rightarrow q) \Rightarrow (p \Rightarrow r)$	G		
Т	Т	Т	Т	Т	Т	Т	Т		
Т	Т	F	F	Т	F	F	T		
Т	F	Т	Т	F	Т	Т	Т		
Т	F	F	Т	F	F	Т	Т		
F	Т	Т	Т	Т	Т	Т	Т		
F	Т	F	F	Т	Т	Т	Т		
F	F	Т	Т	Т	Т	Т	Т		
F	F	F	Т	Т	Т	Т	Т		

This formula is valid.

æ

メロト メポト メヨト メヨト

Give the truth table of the following formula:

$$G \triangleq (p \lor q) \land \neg p \land \neg q$$

What can you say about G?

э

< Ξ > < Ξ >

Exercise 5 - Solution

This formula is **inconsistent** as it admits no model.

Easy to show that G is inconsistent without truth table. Indeed, by De Morgan algebraic law,

$$\neg p \land \neg q \longleftrightarrow \neg (p \lor q)$$

So no there is no valuation that is a model of both $\neg p \land \neg q$ and $(p \lor q)$ and therefore G is inconsistent.

If Robinson is elected president, then Smith will be designated vice-president. If Thompson is elected president, then Smith will designated be vice-president. Either Thompson or Robinson will be elected president. Therefore Smith will be designated vice-president.

Is this text correct?

Solution method:

- 1) Define atoms
 - r : "Robinson is elected president"
 - s : "Smith is designated vice-president"
 - t : "Thompson is elected president"
- 2) Transform sentences in formulas:
 - $H_1 \triangleq r \Rightarrow s$
 - $H_2 \triangleq t \Rightarrow s$
 - $H_3 \triangleq t \lor r$
 - $C \triangleq s$

3) Prove that the sentence is true, i.e. C is a logical consequence of $\{H_1, H_2, H_3\}$

Reminder, 3 possibilities:

- **1** Prove $\{H_1, H_2, H_3\} \models C$
- **2** Prove $\{H_1, H_2, H_3, \neg C\}$ is inconsistent
- Prove $H_1 \wedge H_2 \wedge H_3 \wedge \neg C$ is inconsistent

We will try case 3 and case 1.

Exercise 6 - Solution

<u>Method 3</u>: Show $G \triangleq H_1 \land H_2 \land H_3 \Rightarrow C \triangleq (r \Rightarrow s) \land (t \Rightarrow s) \land (t \lor r) \Rightarrow s$ is valid.

A. Using a truth table.

r	5	t	$r \Rightarrow s$	$t \Rightarrow s$	$t \lor r$	$H_1 \wedge H_2 \wedge H_3$	G
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	Т	Т	Т	Т
Т	F	Т	F	F	Т	F	Т
Т	F	F	F	Т	Т	F	Т
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	Т	Т	F	F	Т
F	F	Т	Т	F	Т	F	Т
F	F	F	Т	Т	F	F	Т

æ

イロン イ理と イヨン イヨン

B. Using valuation.

Ad absurdum

We need to show that there exist no v such that

 $v(H_1 \wedge H_2 \wedge H_3 \Rightarrow C) = F.$ Let's consider that such a valuation exists. Then:

•
$$v((r \Rightarrow s) \land (t \Rightarrow s) \land (t \lor r) \Rightarrow s) = F$$

• $v((r \Rightarrow s) \land (t \Rightarrow s) \land (t \lor r)) = T$ and $v(s) = F$
• $v(r \Rightarrow s) = T$ and $v(s) = F$ implies $v(r) = F$
• $v(t \lor r)$ and $v(r) = F$ implies $v(t) = T$
But then we have simultaneously that $v(t \Rightarrow s)$ must be T through 2 and

But then we have simultaneously that $v(t \Rightarrow s)$ must be T through 2 and F as v(s) = F and $v(t) = T \rightarrow$ **Contradiction!**

There exist no such valuation and therefore the proposition is valid.

 $\frac{\text{Method } 1}{\text{Show } \{H_1, H_2, H_3\}} \models C.$

We need to show that v(C) = T when $v(H_1 \land H_2 \land H_3) = T$ for every possible valuation v.

Let v be a valuation such that $v(H_1 \wedge H_2 \wedge H_3) = T$. We therefore have that $v(H_1) = v(H_2) = v(H_3) = T$.

If $v(H_3) = T$, then $v(t \lor r) = T$ and we end up with two cases: • v(t) = T• v(r) = T

・ロト ・聞 ト ・ 臣 ト ・ 臣 ト … 臣

Case 1: v(t) = T

As we have $v(H_2) = T$, $v(t \Rightarrow s) = v(\text{true} \Rightarrow s) = T$. Therefore, v(s) must be T and v(C) also.

Case 2: v(r) = T

As we have $v(H_1) = T$, $v(r \Rightarrow s) = v(\text{true} \Rightarrow s) = T$. Therefore, v(s) must be T and v(C) also.

Conclusion

v(C) = T in all cases so the sentence is true.

超す イヨト イヨト ニヨ