Introduction to computability Tutorial 9

Uncomputability

27 November 2018

Some undecidable languages

universal language: $UL = \{ \langle M, w \rangle \mid M \text{ accepts } w \}$ $UL = \{ \langle M, w \rangle \mid M \text{ rejects or cycles on } w \}$ halting problem: $H = \{ \langle M, w \rangle \mid M \text{ stops on } w \}$ empty-word halting problem: $\{M \mid M \text{ stops on } \varepsilon\}$ existential halting problem: $\{M \mid (\exists w) \mid M \text{ stops on } w\}$ universal halting problem: $\{M \mid (\forall w) \mid M \text{ stops on } w\}$ empty accepted language: $\{M \mid L(M) = \emptyset\}$ recursive accepted language: $\{M \mid L(M) \in R\}$ undecidable accepted language: $\{M \mid L(M) \notin R\}$

1. Let M_1 and M_2 be two Turing machines that accept respectively the languages L_1 and L_2 . Show that determining if $L_1 \subseteq L_2$ is undecidable. 1. Let M_1 and M_2 be two Turing machines that accept respectively the languages L_1 and L_2 . Show that determining if $L_1 \subseteq L_2$ is undecidable.

2. Show that $L \notin R$ and that $L \in RE$ where

 $L = \{M | M \text{ is a Turing machine and } \varepsilon \in L(M)\}.$

1. Let M_1 and M_2 be two Turing machines that accept respectively the languages L_1 and L_2 . Show that determining if $L_1 \subseteq L_2$ is undecidable.

2. Show that $L \notin R$ and that $L \in RE$ where

 $L = \{M | M \text{ is a Turing machine and } \varepsilon \in L(M)\}.$

3. Let *L* be a regular language and *w* a word. The problem *P* determines whether or not there exists a word *w'* such that $ww' \in L$. Determine if $P \in R$ and if $P \in RE$. Justify. 4. Knowing that the problem of determining the universality of a context-free language (i.e. the problem of determining if for a context-free grammar G one has $L(G) = \Sigma^*$) is undecidable, prove that if G_1 and G_2 are two context-free grammars and G_R is a regular grammar, that the following problems are undecidable:

•
$$L(G_1) = L(G_2);$$

- $L(G_1) = L(G_R);$
- $L(G_1) \subseteq L(G_2);$
- $L(G_R) \subseteq L(G_1).$

Some undecidable languages

universal language: $UL = \{ \langle M, w \rangle \mid M \text{ accepts } w \}$ $UL = \{ \langle M, w \rangle \mid M \text{ rejects or cycles on } w \}$ halting problem: $H = \{ \langle M, w \rangle \mid M \text{ stops on } w \}$ empty-word halting problem: $\{M \mid M \text{ stops on } \varepsilon\}$ existential halting problem: $\{M \mid (\exists w) \mid M \text{ stops on } w\}$ universal halting problem: $\{M \mid (\forall w) \mid M \text{ stops on } w\}$ empty accepted language: $\{M \mid L(M) = \emptyset\}$ recursive accepted language: $\{M \mid L(M) \in R\}$ undecidable accepted language: $\{M \mid L(M) \notin R\}$

5. An *unneeded* state of a Turing machine is a state that is never encountered, no matter what input word is considered. Let M be a Turing machine and e a state of this machine. Show that the problem that consists of determining if the state e is unneeded by M is undecidable.

Bonus Exercise 10

Let M_1 , M_2 and M_3 be Turing machines that accept respectively the languages L_1 , L_2 and L_3 . Prove that the problem of determining if $(L_1 \cap L_2) \subseteq L_3$ is undecidable.