Introduction to computability Tutorial 8

Recursive functions and Uncomputability

20 November 2018

1. Show that the following functions are primitive recursive:
a) square (x) that is equal to 1 if x is a square and 0 otherwise;
b) $\operatorname{sumSquares}(x)=\sum_{i=0}^{x} i^{2}$;
c) $\bmod (x, y)$ that computes the remainder of the division of x by y;
d) divides (x, y) that is equal to 1 if x divides y and 0 otherwise;
e) bounded maximization:

$$
\nu i \leqslant m q(\bar{n}, i)=\left\{\begin{array}{l}
\text { the greatest } i \leqslant m \text { such that } q(\bar{n}, i)=1 \\
0 \text { if there is no such } i
\end{array}\right.
$$

f) $\operatorname{gcd}(x, y)$ that computes the greatest common divisor of x and y;
g) $\operatorname{Icm}(x, y)$ that computes the least common multiple of x and y.
2. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function such that there exists $p \in \mathbb{N}_{0}$ such that

$$
(\forall x \in \mathbb{N})(f(x+p)=f(x)) .
$$

Show that f is a primitive recursive function.
3. Let Σ be an alphabet with k symbols and let $f(x, y)$ be a function where

- x is the Gödel number of a word w on the alphabet Σ
- $y \in \mathbb{N}$

The function $f(x, y)$ is the Gödel number of the word encoded by x without the y last symbols. Formally, if $w=w_{0} \ldots w_{l}$, then $f(x, y)$ is the Gödel number of the word

$$
w^{\prime}= \begin{cases}w_{0} \ldots w_{l-y} & \text { if } y \leqslant 1 \\ \varepsilon & \text { if } y>1\end{cases}
$$

Is this a primitive recursive function?

Gödel number

Alphabet Σ of size k. Each symbol of Σ is represented by an integer between 1 and k. The representation of a string $w=w_{0} \ldots w_{l}$ is thus

$$
g d(w)=\sum_{i=0}^{l}(k+1)^{l-i} g d\left(w_{i}\right)
$$

3. Let Σ be an alphabet with k symbols and let $f(x, y)$ be a function where

- x is the Gödel number of a word w on the alphabet Σ
- $y \in \mathbb{N}$

The function $f(x, y)$ is the Gödel number of the word encoded by x without the y last symbols. Formally, if $w=w_{0} \ldots w_{l}$, then $f(x, y)$ is the Gödel number of the word

$$
w^{\prime}= \begin{cases}w_{0} \ldots w_{l-y} & \text { if } y \leqslant 1 \\ \varepsilon & \text { if } y>1\end{cases}
$$

Is this a primitive recursive function?

Accepted and decided languages (informally)

- A TM decides a language L if:

1. it accepts all the words of the language,
2. it rejects all other words, and
3. it has no infinite executions.
\hookrightarrow Decidability class R decidable (recursive).

- A TM accepts a language L if:

1. it accepts all the words of the language,
2. it rejects or does not terminate for all other words.
\hookrightarrow Decidability class RE partially decidable (recursively enumerable).

- $R \subset R E$.

Three possibilities

Uncomputability

4. Show that the regular languages and the context-free languages are decidable.

Uncomputability

4. Show that the regular languages and the context-free languages are decidable.
5. Let L_{1} and L_{2} be two languages that belong to the class $R E$. Show that the languages $L_{1} \cup L_{2}$ and $L_{1} \cap L_{2}$ also belong to the class $R E$.

Uncomputability

4. Show that the regular languages and the context-free languages are decidable.
5. Let L_{1} and L_{2} be two languages that belong to the class $R E$. Show that the languages $L_{1} \cup L_{2}$ and $L_{1} \cap L_{2}$ also belong to the class $R E$.
6. Let M_{1} and M_{2} be two Turing machines.

Show that the problem whether or not there exists a word w such that M_{1} and M_{2} both terminate on w is undecidable.

Reduction technique

To prove that a language L_{2} is undecidable $(\notin R)$ knowing that L_{1} is undecidable:

1. By contradiction, assume that L_{2} is decidable;
2. Write an algorithm that decides L_{1} using as a sub-program an algorithm that decides L_{2};
3. However, L_{1} is undecidable \rightarrow contradiction!
$\rightarrow L_{2}$ is undecidable.

Some undecidable languages

universal language: $U L=\{\langle M, w\rangle \mid M$ accepts $w\}$

$$
\overline{U L}=\{\langle M, w\rangle \mid M \text { rejects or cycles on } w\}
$$

halting problem: $H=\{\langle M, w\rangle \mid M$ stops on $w\}$
empty-word halting problem: $\{M \mid M$ stops on $\varepsilon\}$
existential halting problem: $\{M \mid(\exists w) M$ stops on $w\}$ universal halting problem: $\{M \mid(\forall w) M$ stops on $w\}$

$$
\text { empty accepted language: }\{M \mid L(M)=\varnothing\}
$$

recursive accepted language: $\{M \mid L(M) \in R\}$
undecidable accepted language: $\{M \mid L(M) \notin R\}$

Uncomputability

4. Show that the regular languages and the context-free languages are decidable.
5. Let L_{1} and L_{2} be two languages that belong to the class $R E$. Show that the languages $L_{1} \cup L_{2}$ and $L_{1} \cap L_{2}$ also belong to the class $R E$.
6. Let M_{1} and M_{2} be two Turing machines.

Show that the problem whether or not there exists a word w such that M_{1} and M_{2} both terminate on w is undecidable.

Bonus Exercise 9

Let M_{1} and M_{2} be two Turing machines that accept respectively the languages L_{1} and L_{2}.
Prove that the problem of determining if $L_{1} \cap L_{2}=\varnothing$ is undecidable.

