Introduction to computability Tutorial 5

Finite Automata and Grammars

23 October 2018

1. Take the languages generated by a grammar G whose production rules are of the form

$$
A \rightarrow B w, \quad A \rightarrow w
$$

where A, B are non-terminal symbols and $w \in \Sigma^{*}$.

- Show that the class of these languages coincides exactly with the class of regular languages.
- What happens if we also allow production rules of the form $A \rightarrow w B$?

2. Show that the language $L=\left\{z z z \mid z \in\{a, b\}^{*}\right\}$ is not regular.
3. Show that the language $L=\left\{z z z \mid z \in\{a, b\}^{*}\right\}$ is not regular.
4. Show that the language $L=\left\{a^{i} b^{j} c^{k} \mid k \neq i \cdot j\right\}$ is not regular.
5. Show that the language $L=\left\{z z z \mid z \in\{a, b\}^{*}\right\}$ is not regular.
6. Show that the language $L=\left\{a^{i} b^{j} c^{k} \mid k \neq i \cdot j\right\}$ is not regular.
7. Using the second version of the pumping lemma for regular languages, prove that the language $\left\{a^{n!} \mid n \in \mathbb{N}\right\}$ (where $n!$ is the factorial of n) is not regular.

Bonus Exercise 5

Let L be the language of the words on the alphabet $\{a, b\}$ that contain exactly twice as many times the letter b than the letter a (in an arbitrary order). Formally,

$$
L=\left\{w \in\{a, b\}^{*} \mid N_{b}(w)=2 \cdot N_{a}(w)\right\}
$$

where $N_{\sigma}(w)$ is the number of letters σ contained in the word w. Show that L is not regular.

