Introduction to computability Tutorial 5

Finite Automata and Grammars

23 October 2018

1. Take the languages generated by a grammar ${\sf G}$ whose production rules are of the form

$$A \rightarrow Bw, \qquad A \rightarrow w$$

where A, B are non-terminal symbols and $w \in \Sigma^*$.

- Show that the class of these languages coincides exactly with the class of regular languages.
- What happens if we also allow production rules of the form $A \rightarrow wB$?

2. Show that the language $L = \{zzz \mid z \in \{a, b\}^*\}$ is not regular.

- 2. Show that the language $L = \{zzz \mid z \in \{a, b\}^*\}$ is not regular.
- 3. Show that the language $L = \{a^i b^j c^k \mid k \neq i \cdot j\}$ is not regular.

2. Show that the language $L = \{zzz \mid z \in \{a, b\}^*\}$ is not regular.

3. Show that the language $L = \{a^i b^j c^k \mid k \neq i \cdot j\}$ is not regular.

4. Using the second version of the pumping lemma for regular languages, prove that the language $\{a^{n!} \mid n \in \mathbb{N}\}$ (where n! is the factorial of n) is not regular.

Bonus Exercise 5

Let *L* be the language of the words on the alphabet $\{a, b\}$ that contain exactly twice as many times the letter b than the letter a (in an arbitrary order). Formally,

$$L = \{w \in \{a, b\}^* \mid N_b(w) = 2 \cdot N_a(w)\}$$

where $N_{\sigma}(w)$ is the number of letters σ contained in the word w. Show that L is not regular.