Introduction to computability
Tutorial 5

Finite Automata, Grammars and Pushdown Automata

16 October 2014
1. Take the languages generated by a grammar G whose production rules are of the form

$$A \rightarrow Bw, \quad A \rightarrow w$$

where A, B are non-terminal symbols and $w \in \Sigma^*$.

- Show that the class of these languages coincides exactly with the class of regular languages.
- What happens if we also allow production rules of the form $A \rightarrow wB$?
2. Show that the language \(L = \{ zzz \mid z \in \{a, b\}^* \} \) is not regular.
2. Show that the language $L = \{ zzz \mid z \in \{a, b\}^* \}$ is not regular.

3. Using the second version of the pumping lemma for regular languages, prove that the language $\{ a^n! \mid n \in \mathbb{N} \}$ (where $n!$ is the factorial of n) is not regular.
2. Show that the language \(L = \{ zzz \mid z \in \{a, b\}^*\} \) is not regular.

3. Using the second version of the pumping lemma for regular languages, prove that the language \(\{ a^n! \mid n \in \mathbb{N} \} \) (where \(n! \) is the factorial of \(n \)) is not regular.

4. Show that the language \(L = \{ a^i b^j c^k \mid k \neq i \cdot j \} \) is not regular.
How to draw pushdown automata

A transition \(((q, u, \beta), (q', \gamma))\) is represented by

\[(u, \beta/\gamma)\]
3. Describe the language accepted by the pushdown automata $M = (Q, \Sigma, \Gamma, \Delta, Z, s, F)$ where:

- $Q = \{s, p, q, f\}$;
- $\Sigma = \{a, b, c\}$;
- $\Gamma = \{A, Z\}$;
- $F = \{f\}$;
- Δ contains the following transitions:
 - $(s, a, \varepsilon) \rightarrow (s, A)$,
 - $(s, b, \varepsilon) \rightarrow (q, \varepsilon)$,
 - $(s, c, A) \rightarrow (p, \varepsilon)$,
 - $(q, b, \varepsilon) \rightarrow (q, \varepsilon)$,
 - $(q, c, A) \rightarrow (p, \varepsilon)$,
 - $(p, c, A) \rightarrow (p, \varepsilon)$,
 - $(p, \varepsilon, Z) \rightarrow (f, \varepsilon)$.
4. Give a pushdown automata accepting each of the following languages:

- The language generated by the grammar
 \[S \rightarrow aSa \]
 \[S \rightarrow bSb \]
 \[S \rightarrow \varepsilon; \]

- \[L = \{a^n b^{2m+n} c^m | n, m \geq 0\}; \]

- The language of the words on the alphabet \{a, b\} that contain as many a’s as b’s;

- \[L = \{a^n b^m | 0 < n \leq m \leq 2n\}. \]
Bonus Exercise 5

Let L be the language of the words on the alphabet $\{a, b\}$ that contain exactly twice as many times the letter a than the letter b (in an arbitrary order). Formally,

$$L = \{ w \in \{a, b\}^* \mid N_a(w) = 2 \cdot N_b(w) \}$$

where $N_\sigma(w)$ is the number of letters σ contained in the word w.

- Show that L is not regular.
- Give a pushdown automaton that accepts L.