Introduction to computability Tutorial 4

Finite Automata and Grammars

09 October 2018

Grammars

- A grammar is a 4-tuple $G=(V, \Sigma, R, S)$, where
- V is an alphabet,
- $\Sigma \subseteq V$ is the set of terminal symbols ($V \backslash \Sigma$ is the set of nonterminal symbols),
- $R \subseteq\left(V^{+} \times V^{*}\right)$ is a finite set of production rules,
- $S \in V \backslash \Sigma$ is the start symbol.
- The language generated by a grammar G is the set

$$
L(G)=\left\{v \in \Sigma^{*} \mid S \Rightarrow_{G}^{*} v\right\} .
$$

Grammars

1. For each of the following languages, give a grammar that generates it:
a) $L\left((a \cup b)^{*}\left(b a b \cup b^{*}\right)(a a b)^{*}\right)$;

Grammars

1. For each of the following languages, give a grammar that generates it:
a) $L\left((a \cup b)^{*}\left(b a b \cup b^{*}\right)(a a b)^{*}\right)$;
b) $\left\{a^{m} b^{n} c^{p} \mid m+n=p\right\}$;

Grammars

1. For each of the following languages, give a grammar that generates it:
a) $L\left((a \cup b)^{*}\left(b a b \cup b^{*}\right)(a a b)^{*}\right)$;
b) $\left\{a^{m} b^{n} c^{p} \mid m+n=p\right\}$;
c) the language of the palindromes on $\Sigma=\{a, b\}$, i.e. the
language containing the words $w=w_{0} w_{1} \ldots w_{n}$ such that for all i, $0 \leq i \leq n$ we have that $w_{i}=w_{n-i}$;

Grammars

1. For each of the following languages, give a grammar that generates it:
a) $L\left((a \cup b)^{*}\left(b a b \cup b^{*}\right)(a a b)^{*}\right)$;
b) $\left\{a^{m} b^{n} c^{p} \mid m+n=p\right\}$;
c) the language of the palindromes on $\Sigma=\{a, b\}$, i.e. the
language containing the words $w=w_{0} w_{1} \ldots w_{n}$ such that for all i, $0 \leq i \leq n$ we have that $w_{i}=w_{n-i}$;
d) the language accepted by the following automaton:

2. Describe the languages generated by the following grammars:
a) $S \rightarrow a S a$ b) $S \rightarrow a S$
c) $S \rightarrow L a R$
$S \rightarrow b S b$
$S \rightarrow b S$
$L \rightarrow L D$
$G \rightarrow \varepsilon$
$S \rightarrow \varepsilon$
$D a \rightarrow a a D$
$D R \rightarrow R$
$L \rightarrow \varepsilon$
$R \rightarrow \varepsilon$

The "pumping" lemma

Let L be a regular language and let $w \in L$ be such that $|w| \geq|Q|$ where Q is the set of states of a deterministic automaton accepting L. Then $\exists x, u, y$, with $u \neq \varepsilon$ and $|x u| \leq|Q|$ such that $x u y=w$ and, $\forall n, x u^{n} y \in L$.
3. Using the second version of the pumping lemma, prove that the language $\left\{a^{m} b^{n} \mid m>n\right\}$ is not regular.
4. Let L be a regular language. Consider the following algorithm to test if L is finite:

- Construct the DFA A such that $L(A)=L$
- Simulate A on all the words of length between n and $2 n-1$ where n is the number of states of A.
- Output yes if and only if no word is accepted and otherwise output no.
Is this algorithm correct? Motivate your answer!
Can you give a more efficient algorithm?

Bonus Exercise 4

Let L be the language generated by the grammar

$$
\begin{aligned}
& S \rightarrow A \mid B \\
& A \rightarrow Y Z Y A \mid \varepsilon \\
& B \rightarrow X c \\
& X \rightarrow a X|b X| \varepsilon \\
& Y \rightarrow c Y \mid \varepsilon \\
& Z \rightarrow a \mid b
\end{aligned}
$$

where S is the start symbol.
a) For each non-terminal symbol, give a regular expression for the language generated from that symbol.
b) Give a NFA that accepts L.

