Introduction to computability
Tutorial 4

Finite Automata and Grammars

09 October 2014
Pattern search

We want to look in a text on the alphabet Σ for the word u. We thus want an automaton that accepts $L(\Sigma^* u)$.

\[
\begin{array}{c}
\Sigma^* \\
\downarrow \\
u_1 \\
\downarrow \\
u_2 \\
\downarrow \\
u_3 \\
\downarrow \\
\ldots \\
\downarrow \\
u_{n-1} \\
\downarrow \\
u_n \\
\end{array}
\]
We want to look in a text on the alphabet \(\Sigma \) for the word \(u \). We thus want an automaton that accepts \(L(\Sigma^* u) \).

1. Give a deterministic finite automaton that recognizes the pattern "nano".
Grammars

2. For each of the following languages, give a grammar that generates it:
 a) \(L((a \cup b)^* (bab \cup b^*)(aab)^*) \);
Grammars

2. For each of the following languages, give a grammar that generates it:
 a) \(L((a \cup b)^*(bab \cup b^*)(aab)^*) \);
 b) \(\{a^m b^n c^p \mid m + n = p\} \);
Grammars

2. For each of the following languages, give a grammar that generates it:
 a) \(L((a \cup b)^*(bab \cup b^*)(aab)^*); \)
 b) \(\{a^mb^n c^p \mid m + n = p\}; \)
 c) the language of the palindromes on \(\Sigma = \{a, b\} \), i.e. the language containing the words \(w = w_0w_1 \ldots w_n \) such that for all \(i, 0 \leq i \leq n \) we have that \(w_i = w_{n-i}; \)
Grammars

2. For each of the following languages, give a grammar that generates it:
 a) \(L((a \cup b)^*(bab \cup b^*)(aab)^*) \);
 b) \(\{a^m b^n c^p \mid m + n = p\} \);
 c) the language of the palindromes on \(\Sigma = \{a, b\} \), i.e. the language containing the words \(w = w_0 w_1 \ldots w_n \) such that for all \(i, 0 \leq i \leq n \) we have that \(w_i = w_{n-i} \);
 d) the language accepted by the following automaton:
3. Describe the languages generated by the following grammars:

a) \[S \rightarrow aSa \]
 \[S \rightarrow bSb \]
 \[G \rightarrow \varepsilon \]

b) \[S \rightarrow aS \]
 \[S \rightarrow bS \]
 \[S \rightarrow \varepsilon \]

c) \[S \rightarrow LaR \]
 \[L \rightarrow LD \]
 \[Da \rightarrow aaD \]
 \[DR \rightarrow R \]
 \[L \rightarrow \varepsilon \]
 \[R \rightarrow \varepsilon \]
4. Using the second version of the pumping lemma, prove that the language \(\{a^m b^n \mid m > n\} \) is not regular.
Additional exercises

- Give a deterministic finite automaton representing in base 3 the set of even numbers.
- Give a deterministic finite automaton representing in base 3 the set \(\{ x \geq 4 \mid x \in \mathbb{N} \} \).
- Give a deterministic finite automaton representing in base 3 the set \(\{ 2x \mid x \in \mathbb{N} \} \cup \{ x < 4 \mid x \in \mathbb{N} \} \).
Bonus Exercise 4

Show that the language $L = \{ www \mid w \in \{a, b\}^* \}$ is not regular.