Introduction to computability Tutorial 2

Finite Automata

25 September 2018

1. For both of the following automata:
a) give a regular expression of the language accepted by this automaton (without using the $R(i, j, k)$ - method);
b) give an equivalent deterministic finite automaton.

2. Give a deterministic finite automaton that accepts
a) the language with regular expression $(a b \cup b a)^{+}$;
b) the language with regular expression $a b \cup(a a b)^{*}$;
c) the language containing the words defined on $\{a, b\}$ where the number of a 's is a multiple of 4 .
3. Give a deterministic finite automaton that accepts
a) the language with regular expression $(a b \cup b a)^{+}$;
b) the language with regular expression $a b \cup(a a b)^{*}$;
c) the language containing the words defined on $\{a, b\}$ where the number of a 's is a multiple of 4 .
4. Show, using the theory on finite automata that the regular expressions $\left(a^{*} b\right)^{*}$ and $\varepsilon \cup(a \cup b)^{*} b$ denote the same language.
5. Let $L \subseteq \Sigma^{*}$. Show that if L is a regular language, than so is $\operatorname{Pref}(L)$, the language containing all the prefixes of the words of L. Formally:

$$
\operatorname{Pref}(L)=\left\{w \in \Sigma^{*} \mid(\exists x \in L)\left(\exists z \in \Sigma^{*}\right) x=w z\right\}
$$

4. Let $L \subseteq \Sigma^{*}$. Show that if L is a regular language, than so is $\operatorname{Pref}(L)$, the language containing all the prefixes of the words of L. Formally:

$$
\operatorname{Pref}(L)=\left\{w \in \Sigma^{*} \mid(\exists x \in L)\left(\exists z \in \Sigma^{*}\right) x=w z\right\}
$$

5. Let $M=\left(Q, \Sigma, \Delta, s_{0}, F\right)$ be a deterministic finite automaton and L the language accepted by this automaton.
How can M be modified in order to obtain a non-deterministic finite automaton M^{\prime} that accepts $L^{R}=\left\{w \mid w^{R} \in L\right\}$, where w^{R} is the mirror of the word w. (Example: $w=a b c$ and $w^{R}=c b a$).

Bonus Exercise 2

Let $L \subseteq \Sigma^{*}$. Show that if L is a regular language, than so is \bar{L}, the the complement of L.
Formally:

$$
\bar{L}=\left\{w \in \Sigma^{*} \mid w \notin L\right\}
$$

