Introduction to computability Tutorial 2

Finite Automata

25 September 2018

- 1. For both of the following automata:
 - a) give a regular expression of the language accepted by this automaton (without using the R(i, j, k) method);
 - b) give an equivalent deterministic finite automaton.

- 2. Give a deterministic finite automaton that accepts
 - a) the language with regular expression $(ab \cup ba)^+$;
 - b) the language with regular expression $ab \cup (aab)^*$;
 - c) the language containing the words defined on $\{a, b\}$ where the number of *a*'s is a multiple of 4.

- 2. Give a deterministic finite automaton that accepts
 - a) the language with regular expression $(ab \cup ba)^+$;
 - b) the language with regular expression $ab \cup (aab)^*$;
 - c) the language containing the words defined on $\{a, b\}$ where the number of *a*'s is a multiple of 4.

3. Show, using the theory on finite automata that the regular expressions $(a^*b)^*$ and $\varepsilon \cup (a \cup b)^*b$ denote the same language.

4. Let $L \subseteq \Sigma^*$. Show that if L is a regular language, than so is Pref(L), the language containing all the prefixes of the words of L. Formally:

$${\it Pref}(L) = \{w \in \Sigma^* \, | \, (\exists x \in L) (\exists z \in \Sigma^*) x = wz\}$$

4. Let $L \subseteq \Sigma^*$. Show that if L is a regular language, than so is Pref(L), the language containing all the prefixes of the words of L. Formally:

$${\it Pref}(L) = \{w \in \Sigma^* \, | \, (\exists x \in L) (\exists z \in \Sigma^*) x = wz\}$$

5. Let $M = (Q, \Sigma, \Delta, s_0, F)$ be a deterministic finite automaton and L the language accepted by this automaton. How can M be modified in order to obtain a non-deterministic finite automaton M' that accepts $L^R = \{w \mid w^R \in L\}$, where w^R is the mirror of the word w. (Example: w = abc and $w^R = cba$).

Bonus Exercise 2

Let $L \subseteq \Sigma^*$. Show that if L is a regular language, than so is \overline{L} , the the complement of L. Formally:

$$\overline{L} = \{ w \in \Sigma^* \mid w \notin L \}$$