Introduction to computability Tutorial 11

Complexity

11 December 2018

1. Let L_{1} and L_{2} be two languages that belong to P. Does the language $L_{1} . L_{2}$ belong to P as well?
2. Let L_{1} and L_{2} be two languages that belong to P. Does the language $L_{1} . L_{2}$ belong to P as well?
3. Are the languages belonging to the class co-NP decidable?
4. Let L_{1} and L_{2} be two languages that belong to P. Does the language L_{1}. L_{2} belong to P as well?
5. Are the languages belonging to the class co-NP decidable?
6.

- Show that the complement of a language belonging to P also belongs to P .
- Using this result, show that if NP \neq co-NP, then $P \neq N P$.

Polynomial transformation

Consider the languages $L_{1} \in \Sigma_{1}^{*}$ and $L_{2} \in \Sigma_{2}^{*}$. A polynomial transformation from L_{1} to L_{2} (notation $L_{1} \propto L_{2}$) is a function $f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ that satisfies the following conditions:

1. it is computable in polynomial time,
2. $f(x) \in L_{2}$ if and only if $x \in L_{1}$.

Proving NP-completeness

To prove that $P_{2} \in$ NPC knowing that $P_{1} \in$ NPC one must establish that

1. $P_{2} \in N P$,
2. $P_{2} \in$ NP-hard by showing that $P_{1} \propto P_{2}$.
3. Show that the dominating set problem (DS) is NP-complete.

Given a graph $G=(V, E)$ and an integer $j \leqslant|V|$, the problem is to determine if there exists a subset $V^{\prime} \subseteq V$ such that $\left|V^{\prime}\right| \leqslant j$ and such that for each vertex $u \in V \backslash V^{\prime}$ there exists a vertex $v \in V^{\prime}$ such that $(u, v) \in E$.

Hint: A polynomial transformation from VC to DS proves that DS is NP-hard. The idea of the transformation is to eliminate isolated vertices, to add to the initial graph one vertex per edge and to link each new vertex to the endpoints of the corresponding edge.

Solution

We need to show that

1. DS is NP
2. DS is NP-hard

Non-deterministic polynomial algorithm for DS

1. Generate non-deterministically a subset $V^{\prime} \subseteq V$ s.t. $\left|V^{\prime}\right| \leqslant j$.
2. Test if it is a dominating set.

The (non-deterministic) generation of V^{\prime} and the testing can be done polynomially with respect to the number of vertices $|V|$.

2. DS is NP-hard

Hint: give a polynomial transformation from VC et DS (VC $\propto \mathrm{DS})$ Reminder:

VC Input • Graph $G(V, E)$

- cst $j \leqslant|V|$

Problem does there exist $V^{\prime} \subseteq V$ s.t. $\left|V^{\prime}\right| \leqslant j$ and s.t.
\forall edge $(u, v) \in E, u \in V^{\prime}$ or $v \in V^{\prime}$
$->$ all edges have at least one endpoint in V^{\prime}
DS Input • Graph $G(V, E)$

- cst $j \leqslant|V|$

Problem does there exist $V^{\prime} \subseteq V$ s.t. $\left|V^{\prime}\right| \leqslant j$ and s.t.
\forall vertex $u \in V \backslash V^{\prime}, \exists v \in V^{\prime}$ s.t. $(u, v) \in E$
$->$ all vertices are connected with V^{\prime}

We want a function $f(G, j)=\left(G^{\prime}, j^{\prime}\right)$ that is polynomial and s.t.

$$
(G, j) \in \mathrm{VC} \Longleftrightarrow\left(G^{\prime}, j^{\prime}\right) \in \mathrm{DS} .
$$

- G^{\prime} is obtained by removing all isolated vertices from G (those that are endpoint of no edge) and by adding a new vertex $v_{i j}$ for each edge $\left(v_{i}, v_{j}\right)$ of G and by adding the edges $\left(v_{i}, v_{i j}\right)$ and ($v_{i j}, v_{j}$).
- $j^{\prime}=j$

f is a polynomial transformation

We need to show that

1. f is polynomial
2. $x \in \mathrm{VC} \Longleftrightarrow f(x) \in \mathrm{DS}$
3. f is polynomial

We have that f is polynomial as it depends linearly on the number of edges and vertices in G.
2. $x \in \mathrm{VC} \Rightarrow f(x) \in \mathrm{DS}$

Let $V_{V C}$ be the solution set of $V C(G, j)$, thus each edge has at least one endpoint in $V_{V C}$. We will show that $V_{V C}$ is also a solution set of $D S\left(G^{\prime}, j^{\prime}\right)$ where $\left(G^{\prime}, j^{\prime}\right)=f(G, j)$.

Let $u \in G^{\prime}$ such that $u \notin V_{V C}$
$u \in G$: Thus u is not an isolated vertex, as those are not in G^{\prime}. Let (u, v) be an edge of G, then $v \in V_{V C}$, thus u is connected to $V_{V C}$.
$u \notin G$: Thus u is one of the new vertices $v_{i j}$ where $\left(v_{i}, v_{j}\right)$ is an edge of G. Therefore, either v_{i} or v_{j} belongs to $V_{V c}$. Hence $u=v_{i j}$ is connected to $V_{V C}$ either via $\left(v_{i}, v_{i j}\right)$ or via $\left(v_{i j}, v_{j}\right)$.
2. $x \in \mathrm{VC} \Leftarrow f(x) \in \mathrm{DS}$

Let $V_{D S}$ be the solution set of $D S\left(G^{\prime}, j^{\prime}\right)$ where $\left(G^{\prime}, j^{\prime}\right)=f(G, j)$. Thus each vertex of $G^{\prime} \backslash V_{D S}$ is connected to $V_{D S}$ with an arc. We can assume without loss of generality that all vertices of $V_{D S}$ belong to G. $\left(^{*}\right)$ We will show that $V_{D S}$ is also a solution set of $V C(G, j)$. Thus, we will show that each edge (u, v) of G has an endpoint in $V_{D S}$.
$\left(^{*}\right)$ If a vertex u of $V_{D S}$ does not belong to G (that is $u=v_{i j}$, one of the new vertices), then $V_{D S}=\left(V_{D S} \cup\left\{v_{i}\right\}\right) \backslash\{u\}$. The new $V_{D s}$ is still a solution of $D S\left(G^{\prime}, j^{\prime}\right)$. The only nodes that were affected are v_{i}, v_{j} and $v_{i j}$. As $v_{i} \in V_{D S}$, we only need to show that v_{j} and $v_{i j}$ are connected with $v_{D S}$. This is the case as $\left(v_{i}, v_{i j}\right)$ and $\left(v_{i}, v_{j}\right)$ are edges of the graph G^{\prime}.

Reminder: We will show that each edge (u, v) of G has an endpoint in $V_{D S}$.

Given an edge $\left(v_{i}, v_{j}\right) \in G$, we will show that $v_{i} \in V_{D S}$ or $v_{j} \in V_{D S}$. We know that $v_{i j} \notin V_{D S}$ and is therefore connected to $V_{D S}$, that is, there exists an edge $\left(v_{i j}, u\right)$ such that $u \in V_{D S}$. By construction however, the only edges involving $v_{i j}$ are ($v_{i}, v_{i j}$) and $\left(v_{i j}, v_{j}\right)$, therefore either $v_{i} \in V_{D S}$ or $v_{j} \in V_{D S}$.
5. Show that PSPACE \subseteq EXPTIME.

Bonus Exercise 12

Let L be the language over the alphabet $\{<,>,!\}$ generated by the following grammar where S is the start symbol

$$
\begin{aligned}
& S \rightarrow<S>|>S<| \varepsilon \\
& E \rightarrow!E \mid \varepsilon
\end{aligned}
$$

1. Describe L.
2. Is L a regular language?
3. Is L a context-free language?
