Introduction to computability Tutorial 1

Regular Expressions and Denumerable Sets

18 September 2018

Regular expressions

1. Let R and S be the following regular expressions:

$$
\begin{gathered}
R=a^{*} \cup b^{*} \\
S=a b^{*} \cup b a^{*} \cup b^{*} a \cup\left(a^{*} b^{*}\right)^{*}
\end{gathered}
$$

(a) Find a word that belongs to $L(S)$ but not to $L(R)$.
(b) Find a word that belongs to both $L(R)$ and $L(S)$.
(c) Find a word that belongs to $L(R)$ but not to $L(S)$.
(d) Find a word that belongs neither to $L(R)$ nor to $L(S)$.
2. Determine whether the following statements are correct or not on the alphabet $\Sigma=\{a, b\}$:
(a) $a a b \in L\left(b^{*} a^{*} b^{*} a^{*}\right)$;
(b) $L\left(\emptyset^{*}\right)=L(\epsilon)$;
(c) $\left(L_{1} \cup L_{2}\right)^{*}=L_{1}^{*} \cup L_{2}^{*}$;
(d) $\left(L_{1} \cdot L_{2}\right)^{*}=L_{1}^{*} \cdot L_{2}^{*}$.
2. Determine whether the following statements are correct or not on the alphabet $\Sigma=\{a, b\}$:
(a) $a a b \in L\left(b^{*} a^{*} b^{*} a^{*}\right)$;
(b) $L\left(\emptyset^{*}\right)=L(\epsilon)$;
(c) $\left(L_{1} \cup L_{2}\right)^{*}=L_{1}^{*} \cup L_{2}^{*}$;
(d) $\left(L_{1} \cdot L_{2}\right)^{*}=L_{1}^{*} \cdot L_{2}^{*}$.
3. Give a regular expression of the following languages (defined on $\Sigma=\{a, b\})$:
(a) the language whose words contain an odd number of a's;
(b) the language whose words contain exactly once the factor aaa;
(c) the language whose words do not end with b;
(d) the language whose words contain an even number of symbols.

Denumerable sets

4. Are the following sets denumerable?
(a) The set \mathbb{Z} containing all integers.
(b) The set $\mathbb{N} \times \mathbb{N}$ of all pairs.
(c) The set $2^{\mathbb{N}}$ of all subsets of \mathbb{N}.
(d) The set \mathbb{Q} containing all rational numbers.
(e) The set of all polynomials with integer coefficients.

Denumerable sets

4. Are the following sets denumerable?
(a) The set \mathbb{Z} containing all integers.
(b) The set $\mathbb{N} \times \mathbb{N}$ of all pairs.
(c) The set $2^{\mathbb{N}}$ of all subsets of \mathbb{N}.
(d) The set \mathbb{Q} containing all rational numbers.
(e) The set of all polynomials with integer coefficients.
5. Show that
(a) every infinite subset of a denumerable set is itself denumerable;
(b) the difference between a non-denumerable and a denumerable set is not denumerable.

Bonus Exercise 1

Is the set of well formed arithmetic expressions denumerable? For example $3 *(2+4)$ is well formed and $3+* 5$ is not.

